
A Framework for Embedded
Digital Musical Instruments

Ivan Franco

Music Technology Area
Schulich School of Music

McGill University
Montreal, Canada

A thesis submitted to McGill University in partial fulfillment of the requirements for the degree
of Doctor of Philosophy.

© 2019 Ivan Franco

2019/04/11

i

Abstract

Gestural controllers allow musicians to use computers as digital musical instruments (DMI). The
body gestures of the performer are captured by sensors on the controller and sent as digital control
data to a audio synthesis software.

Until now DMIs have been largely dependent on the computing power of desktop and laptop
computers but the most recent generations of single-board computers have enough processing
power to satisfy the requirements of many DMIs. The advantage of those single-board computers
over traditional computers is that they are much smaller in size. They can be easily embedded
inside the body of the controller and used to create fully integrated and self-contained DMIs.

This dissertation examines various applications of embedded computing technologies in DMIs.
First we describe the history of DMIs and then expose some of the limitations associated with the
use of general-purpose computers. Next we present a review on different technologies applicable
to embedded DMIs and a state of the art of instruments and frameworks. Finally, we propose new
technical and conceptual avenues, materialized through the Prynth framework, developed by the
author and a team of collaborators during the course of this research.

The Prynth framework allows instrument makers to have a solid starting point for the de-
velopment of their own embedded DMIs. It is composed of several interoperating hardware and
software components, publicly available as open-source technologies and continuously updated to
include new features. Prynth has been lauded in both academic and artistic circles, resulting in
an active and engaged user community.

This community uses our framework to build many different DMIs that serve idiosyncratic
goals and a panoply of musical contexts. The author himself is responsible for the design and
construction of “The Mitt”, an instrument that was selected for the finals of the 2017 edition of
the Guthman Musical Instrument Competition, the most prestigious event of its kind.

We believe that embedded computing will play a fundamental role in the future of DMIs. By
surpassing the reliance on traditional computers, embedded DMIs have the possibility of becoming
integrated and robust interactive devices, with increased usability and performance. All of these
represent key factors to the evolution and growth of these musical instruments.

ii

Résumé

Les contrôleurs gestuels permettent aux musiciens d’utiliser les ordinateurs en tant qu’instruments
numériques de musique (INM). Les mouvements corporels de l’artiste sont enregistrés par des
capteurs sur le contrôleur, puis envoyés sous forme de données de contrôle numériques à un logiciel
de synthèse audio.

Jusqu’ici, les INM étaient largement dépendants de la puissance de calcul des ordinateurs
portables et des unités centrales, mais les générations les plus récentes d’ordinateurs à carte unique
disposent d’une puissance de calcul suffisante pour satisfaire aux exigences de nombreux INM.
L’avantage de ces ordinateurs à carte unique sur les ordinateurs traditionnels réside dans leur
taille qui s’avère bien moindre. Ils peuvent facilement être embarqués dans le corps du contrôleur
et être utilisés pour créer des INM indépendants et totalement intégrés.

Cette dissertation examine les diverses applications des systèmes d’informatique embarquée
aux INM. Dans un premier lieu, nous ferons un rappel de l’histoire des INM, puis nous exposerons
certaines des limites associées à l’utilisation d’ordinateurs génériques. Par la suite nous présen-
terons une analyse des différentes technologies applicables aux INM embarqués et l’état de l’art des
systèmes et instruments. Enfin, nous proposerons de nouvelles voies conceptuelles et techniques,
matérialisées par le système Prynth, développé par l’auteur ainsi qu’une équipe de collaborateurs
dans le cadre de cette recherche.

Le système Prynth permet aux fabricants d’instruments de disposer d’une solide base de
développement pour la création de leurs INM embarqués. Il est composé de nombreux éléments
matériels et logiciels en interopération, de technologies disponibles en open-source et continuelle-
ment mises à jour pour intégrer de nouvelles fonctionnalités. Prynth a été acclamé à la fois dans les
cercles académiques et artistiques, avec pour conséquence une communauté très active et motivée.

Cette communauté utilise notre système pour construire de nombreux INM qui ont un objectif
idiosyncratique et une large panoplie de contextes musicaux. L’auteur lui-même est responsable
de la conception et de la construction de l’instrument nommé « The Mitt » qui a été sélectionné
pour la finale de l’édition 2017 de la Guthman Musical Instrument Competition, l’événement le
plus prestigieux de sa catégorie au monde.

Nous croyons que l’informatique embarquée jouera un rôle fondamental dans le futur des INM.
En surpassant la dépendance aux ordinateurs classiques, les INM embarqués ont la possibilité de
devenir des appareils interactifs solides et intégrés, disposant d’une utilisabilité et de performances
améliorées. Tous ces critères représentant des éléments-clés de l’évolution et de la croissance de
ces instruments de musique.

iii

Acknowledgments

I would like to express my gratitude to the people and institutions that supported me during the
course of this work.

Thanks to my supervisor Marcelo Wanderley, for his precious knowledge, dedicated tutorship
and wonderful enthusiasm.

Thanks to all of my colleagues at the Input Devices and Music Interaction Laboratory (ID-
MIL) and the Centre for Interdisciplinary Research in Music Media and Technology (CIRMMT),
especially those who have in some way contributed to this research: Ian Hattwick, John Sulli-
van, Johnty Wang, Eduardo Meneses, Jerônimo Barbosa, Harish Venkatesan, Ajin Tom, Antoine
Maiorca and Darryl Cameron.

Thanks to all Prynth users who believed in this project and offered their valuable feedback
and support.

Finally I would like to thank my family for their love: my partner Lígia Teixeira, my newborn
daughter Margot, my mother Isabel and my brother Rafael.

This research was sponsored by the PhD program of the Fundação para a Ciência e Tecnologia
(FCT), a public agency under responsibility of the Portuguese Ministry for Science, Technology
and Higher Education.

iv

v

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 The Promises of Embedded DMIs . 4
1.3 Contributions . 5
1.4 Collaborators . 7
1.5 Structure of the Thesis . 7

2 Background 9
2.1 The Experimental Nature of Electronic Music . 9
2.2 From Mainframes to Laptops . 10
2.3 Idiosyncrasies of Computer Music . 15
2.4 Performing with Computers . 18
2.5 Causality, Ritualism and Expression . 20
2.6 Haptic Interaction . 22
2.7 Musical Controllers . 23
2.8 Digital Musical Instruments . 26
2.9 The Architecture of a DMI . 27
2.10 Instrument Makers . 29
2.11 Crafting a DMI . 30
2.12 Conclusions . 32

3 Limitations of DMIs 33
3.1 A Culture of Musical Objects . 33
3.2 Cognitive Activities . 35
3.3 Immediacy . 36
3.4 Reliability . 37
3.5 Longevity . 40

vi Contents

3.6 Conclusions . 41

4 Embedded Digital Musical Instruments 43
4.1 A Definition of Embedded DMI . 43
4.2 Base Technologies . 44

4.2.1 Microcontroller . 45
4.2.2 Digital Signal Processor . 46
4.2.3 Field-Programmable Gate Array . 47
4.2.4 System-on-Chip . 50
4.2.5 Analysis . 51

4.3 State of the Art . 56
4.3.1 Early Examples . 57
4.3.2 Products . 59
4.3.3 Frameworks . 61
4.3.4 Analysis . 63

4.4 Conclusions . 69

5 Prynth: a Framework for Embedded DMIs 71
5.1 Motivation . 71
5.2 Requirements . 73
5.3 General Overview . 74

5.3.1 Hardware Overview . 74
5.3.2 Software Overview . 76

5.4 Single-board Computer . 78
5.5 Audio . 80
5.6 Sensor Signal Acquisition . 82

5.6.1 Control Board . 83
5.6.2 Muxi Daughterboards . 85
5.6.3 Microcontroller Firmware . 86

5.7 Support Software . 89
5.7.1 Linux Operating System . 89
5.7.2 ALSA and JACK . 92
5.7.3 SuperCollider . 95

5.8 Bridge Application . 97
5.9 Prynth Server . 98

5.9.1 Client Application Features and User Interface 99

Contents vii

5.9.2 Node.js . 108
5.9.3 HTTP Requests . 109
5.9.4 Express API . 111
5.9.5 Sockets and Real-time Communication . 113
5.9.6 Interacting with Linux via Child Processes 114
5.9.7 Interacting with SuperCollider via HTTP 115
5.9.8 SuperCollider Editor . 117
5.9.9 Files . 118

5.10 Sound Synthesis and Mapping in Prynth . 121
5.10.1 Creating a Synthesizer . 121
5.10.2 Mapping Sensor Data . 122
5.10.3 One-to-Many and Many-to-One Mappings 125
5.10.4 Using Sensor Signals as Unit Generators . 126
5.10.5 File Access from SuperCollider Programs 127

5.11 Distribution and Support Materials . 128
5.11.1 Licensing . 128
5.11.2 Distribution . 129
5.11.3 Website . 129
5.11.4 Technical Documentation . 131

5.12 Conclusions . 132

6 Results 135
6.1 Dissemination . 135

6.1.1 Social Media . 135
6.1.2 Public Talks . 136
6.1.3 Specialized Media . 136
6.1.4 Events . 138
6.1.5 Conclusions . 140

6.2 Instruments Built with Prynth . 140
6.2.1 The Mitt . 141
6.2.2 Noiseboxes . 147
6.2.3 SONIO Soundboard . 148
6.2.4 Modular Synths . 150
6.2.5 FlexPrynth . 151
6.2.6 GuitarAMI . 154
6.2.7 Conclusions . 155

viii Contents

7 Discussion 157
7.1 A New Generation of DMIs . 157

7.1.1 The Cultural Push . 157
7.1.2 The Conceptual Push . 158
7.1.3 The Technical Push . 159
7.1.4 Conclusions . 160

7.2 Overcoming the Limitations of Traditional DMIs 160
7.2.1 Embodiment . 161
7.2.2 Cognitive Activities . 161
7.2.3 Immediacy . 162
7.2.4 Reliability and Longevity . 162
7.2.5 Conclusions . 163

7.3 Strengths and Weaknesses of Prynth . 163
7.3.1 Strengths . 163
7.3.2 Weaknesses . 166
7.3.3 Conclusions . 168

7.4 Comparison with the State of the Art . 168
7.5 Future Work . 170

7.5.1 Incremental Improvements . 170
7.5.2 User Studies . 172
7.5.3 New Conceptual Proposals . 172

Appendices 175

A Prynth Technical Details 177
A.1 Description of Control Board . 177
A.2 Remapping of the Raspberry Pi UARTs . 178
A.3 Compiling SuperCollider for the Raspberry Pi . 179

ix

List of Figures

5.1 Hardware architecture overview. 75
5.2 The Mitt with the Prynth hardware inside. 76
5.3 Software architecture overview. 77
5.4 Control board. 84
5.5 Muxi daughterboard. 85
5.6 SuperCollider interactive shell. 97
5.7 Main page of front end application. 100
5.8 System settings. 102
5.9 Sensor settings. 104
5.10 GUI editor. 107
5.11 Prynth website. 130
5.12 Online documentation. 131

6.1 The Mitt. 142
6.2 Backside connectors of the Mitt. 143
6.3 The Noiseboxes. 147
6.4 SONIO Soundboard and its construction. 149
6.5 RR semi-modular. 151
6.6 FlexPrynth versions 2 and 3. 153
6.7 The new GuitarAMI using Prynth. 155

x

xi

List of Tables

5.1 Raspberry Pi 3 Model B technical specifications. 80

xii

xiii

List of Acronyms

ADC analog-to-digital converter
AJAX asynchronous JavaScript and XML
ALSA advanced Linux sound architecture
API application program interface
ARM Advanced RISC Machine
ASIC application-specific integrated circuits
BBB BeagleBone Black
C64 Commodore 64
CAD computer-aided design
CAN controller area network
CCRMA Center for Computer Research in Music and Acoustics
CEMAMu Centre d’Etudes de Mathématique et Automatique Musicales
CIRMMT Centre for Interdisciplinary Research in Music Media and Technology
CMMR International Symposium on Computer Music Multidisciplinary Research
CPLD complex programmable logic device
CPU central processing unit
CRT cathode-ray tube
DAC digital-to-analog converter
DAW digital audio workstation
DC direct-current
DIY do-it-yourself
DMA direct memory access
DMI digital musical instrument
DRAM dynamic random-access memory
DSL domain-specific language
DSP digital signal processor; digital signal processing
FFT fast-Fourier transform

xiv List of Acronyms

FIFO first-in-first-out
FM frequency modulation
FPGA field-programmable gate arrays
GPIO general purpose input/output
GPL general public license
GPS global position system
GPU graphics processing unit
GUI graphical user interface
HCI human-computer interaction
HDL hardware description language
HDMI high-definition multimedia interface
HTML hypertext markup language
HTTP hypertext transfer protocol
I/O input/output
I2C inter-integrated circuit
I2S inter-ic sound
IBM International Business Machines Corporation
IDE integrated development environment
IDMIL Input Devices and Musical Interaction Laboratory
IP internet protocol; intellectual property
IRCAM Institut de Recherche et Coordination Acoustique/Musique
ISPW IRCAM signal processing workstation
JIT just-in-time
JS JavaScript
JSON JavaScript object notation
LADSPA Linux audio developer’s simple plug-in API
LCD liquid crystal display
LV2 Linux Audio Developer’s Simple Plug-in API version 2
MAC multiply-accumulate
MIDI musical instrument digital interface
MIPI mobile industry processor interface
MTG Music Technology Group
NIME New Interfaces for Musical Expression
NWDR Nordwestdeutscher Rundfunk
OnCE on-chip circuit emulation
OS operating system

xv

OSC open sound control
PC personal computer
PCB printed-circuit board
PCI peripheral component interconnect
PCM pulse-code modulation
PD Pure Data
PLD programmable logic device
POSIX portable operating system interface
PRU programmable real-time units
PSoC programmable system-on-chip
PWM pulse-width modulation
RAM random-access memory
RDF Radiodiffusion Française
RISC reduced instruction set computer
RPi Raspberry Pi
RSS RDF site summary
RX reception
SBC single-board computer
SD secure digital
SDK software development kit
SDRAM synchronous dynamic random-access memory
SID sound interface device
SIMD single instruction multiple data
SoC system-on-chip
SPI serial peripheral interface
SSE streaming SIMD extensions
STEIM Studio for Electro-instrumental Music
TCP transmission control protocol
TRRS tip-ring-ring-sleeve
TX transmission
UART universal asynchronous receiver-transmitter
UDP user datagram protocol
UPIC Unité Polyagogique Informatique du CEMAMu
URL uniform resource locator
USB universal serial bus
VHDL very high speed integrated circuit hardware description language

xvi List of Acronyms

VPU video processing unit
VST virtual studio technology
WIMP windows, icons, menus and pointers
XML extensible markup language

1

Chapter 1

Introduction

A digital musical instrument is usually defined as a musical instrument composed by two distinct

elements: a computer running real-time audio synthesis software and an external gestural controller

to play it. Gestural controllers allow computers to be played using a wider palette of physical

gestures than those permitted by the standard mouse and keyboard interfaces. In turn, the

computer allows for the use of different types of synthesis software, ranging from virtual emulations

of hardware devices to custom programs developed in specialized computer music programming

languages. The decoupling between the controller and the sound producing device allows for

numerous combinations of hardware and software, through which musicians can create custom

musical setups, better tuned to their creative and functional needs.

The DMI model of the computer/controller combo has been used almost since the inception of

computer music, but recent advances in embedded computing technologies suggest new architec-

tures that could radically change DMIs. In the last decade, the mobile industry has pushed for the

development of a new generation of processors that are smaller, cheaper and consume much less

power than the ones used in desktop and laptop computers. Today, those new types of embedded

processors have enough computing power for real-time audio processing and many of them are

available in form factors that allow for their incorporation inside the body of the controller itself.

DMIs with embedded computing surpass the need for peripheral devices and have the potential

2 Introduction

to become significantly different interactive devices.

1.1 Motivation

Like almost any other kid in my neighborhood of the late 1980s, my first incursions into music-

making began with garage bands. Born from blue-collar suburban life, the manifest of punk

culture influenced my generation far beyond music, dictating fashion, political ideals and social

behavior. All of the suburban tribes of the time had a very strong relationship with music. It

defined our ideals and was one of the main forms of artistic expression at our disposal. These

underground movements were strongly connected to live performance and concerts were the main

social event. They were also strongly connected to a do-it-yourself (DIY) culture. We created our

own independent music markets by trading tapes, distributing homemade fanzines and organizing

small concerts at social centers, many times sharing musical equipment or switching between the

roles of musician, sound engineer and roadie.

At the time, avant-garde music was not so easily accessible as it is today. We had to search for

it. In those quests, my interests soon diverged to more eclectic and experimental types of music,

such as the works of John Zorn or Bill Laswell. Some of the sounds in their compositions were

synthetically generated, so I began to try to understand how I could emulate such styles. I bought

a computer and started playing with tone generators and sequencers, soon to realize that it would

be difficult to be seriously considered by my peers, simply because this music could not be played

live. Pressing the play button on stage was not an option. This newfound problem haunted me for

a couple of years, until around 1994, when I crossed paths with the excellent artwork of the Catalan

artist Marcellí Antúnez Roca (Roca 2018). Epizoo was an interactive mechatronic performance

where the audience was given control over a robotic exosqueleton attached to Antúnez himself. I

was fascinated by this art piece because it showed both conceptually and technically how a human

could be much intimately connected to the machine than I had ever realized. Later I discovered

that Epizoo’s technical system had been developed by a researcher named Sergi Jordà. He was a

lecturer at the recently launched master in digital arts program of the Pompeu Fabra University

1.1 Motivation 3

in Barcelona and that was where I was heading. By 1999 I had been exposed to the work of artists

like Michel Waisvisz and Laetitia Sonami, who in my perspective had taken live computer music

performance to a new level by creating and performing their own custom DMIs.

In the following years I developed and performed with many of my own DMIs. I was also invited

to go back to my home country Portugal and fill the position of R&D Director of YDreams, a

newly founded company in interactive digital media that later raised significant capital investment.

YDreams became my dream job, where I was able to conduct research, art and business under the

same umbrella. I also had the opportunity to work with several Top 100 companies and collaborate

with some of the best applied research labs in Europe and Silicon Valley, including the Fraunhofer

Institute, Phillips Research, Hewlett-Packard and International Business Machines Corporation

(IBM).

In parallel I continued to develop my artwork and around 2007 I finally had the opportunity

to do my first artistic residence at the Studio for Electro-instrumental Music (STEIM), under the

tutorship of my longtime hero: Michel Waisvisz. Waisviz had an accumulated knowledge about

DMIs like few others. In my opinion he was one of the most important DMI performers because

he truly mastered his instrument, “The Hands” (Torre et al. 2016). He spent years learning and

refining it, until he felt truly connected to the instrument, like an expert with the tool of the trade:

effortlessly but proficiently operated. Michel was also a true thinker and someone who didn’t shy

away from critics and discussion. Realizing he was willing to coach individuals, I grabbed tightly to

that opportunity in the hope for a candid and fruitful discussion. I decided to confront Michel with

the role of the computer in our instruments. Even with significant experience in DMI use, from a

user perspective, I had always felt that the computer kept me from being able to deeply engage

with my instruments. If there was a laptop display anywhere within range, I would inevitably focus

my attention on the numeric representations of the controller’s sensor data, instead of focusing on

the instrumental qualities of the tangible interface. Waisviz corroborated this problem and said

he simply kept the computer far away from the stage. “Put it under the table! Only then you’ll

forget about it”, he told me. I tried to follow his advise, but somehow it felt difficult.

4 Introduction

During 2011 I was on sabbatical and living abroad, but that summer I went to visit YDreams.

I told them I had a few free days and that I wished to engage hands-on with some of the newer

research projects at the laboratory. After much time in a management position, I wanted to

develop something practical during that break. My colleagues presented me with a fresh project

they were working on: an aquatic drone. The goal was to have a toy submarine that could be

controlled in real-time using a mobile application, with virtual controls and a live video feed from

the drone’s point-of-view. At the time the BeagleBone (BeagleBoard 2018) had just been released.

It was one of the first easily accessible Advanced RISC Machine (ARM) single-board computers

(SBC) in the market and it seemed perfect for this project: it was very small and worked pretty

much like a computer. We ordered some BeagleBones and I ended up developing the video server

for the drone. From that moment on, I immediately foresaw the potential of this new class of

minicomputers in DMI applications.

A couple of years later I finally decided to pursue my PhD. I contacted Professor Marcelo

Wanderley and told him about my ideas about using embedded computing in DMIs, only to find

out that, since the launch of the BeagleBone, there had been significant research work in this area,

part of it happening right there at the Input Devices and Music Interaction Laboratory (IDMIL).

The remainder of this story is presented throughout this dissertation.

1.2 The Promises of Embedded DMIs

The initial motivation for applying embedded computing to DMIs is simply that it seems like a

logical progression for this type of instruments. After all, once the DMI has been programmed,

the computer serves only as a processing unit and doesn’t play any fundamental role in the playing

of the instrument itself. If the controller could incorporate the computer, it would no longer be

a controller but a full-fledged instrument. The terminology “digital musical instrument” would

immediately make more sense. But the more we think about the daily usage of DMIs, the more

it becomes evident that embedded computing could solve other problems. DMIs would become

much simpler to setup and operate. Their reliability and longevity could be increased due to their

1.3 Contributions 5

solid-state designs. They could embody the concept of computers made specifically for playing

music, with specialized designs and increased usability. From now on we will call them embedded

DMIs.

1.3 Contributions

Research on DMIs is still somewhat at its infancy. It’s only been about 20 years since we have

had access to the computing power required for real-time audio applications. When it comes to

embedded computing, we are looking at an even narrower time interval. Just during the course

of this research, we have witnessed the introduction of many new technologies and applications of

embedded DMIs. It reinforces our perception that it represents an area of considerable interest,

but it also means that much of the current research is somewhat speculative. We are just giving

our first steps in what can be done with these new technologies and how to apply them in DMIs.

Only time and a continued research effort could prove that we are heading in the right direction.

For now, we are still planting the first seeds.

This dissertation’s main contributions to the field are:

1. State of the Art—an in-depth state-of-the-art review on applications of embedded technolo-

gies to DMIs. Because this is a considerably new area of research, many of the presented

cases were yet to be compiled into a compact and comprehensive format.

2. The Prynth framework—a group of tools for the creation of embedded DMIs, developed by

myself and a team of collaborators at IDMIL. The Prynth framework offers many advan-

tages for researchers and artists that want to build their own embedded DMIs. It provides

higher-level components that work as a good starting point for development, diminishing

the complexity and duration of implementation. It also suggests novel interaction models

for embedded DMIs and respective workflows.

3. Academic Publications and Conferences—Our work on embedded DMIs resulted in three

academic papers. The first was “Practical evaluation of synthesis performance on the Bea-

6 Introduction

gleBone Black (BBB) (Franco and Wanderley 2015), presented in the 2015 edition of the

international conference on New Interfaces for Musical Expression (NIME), which took place

at the Louisiana State University in Baton Rouge, Louisiana. The research presented was

part of our initial findings with ARM-based SBCs, before Prynth was officially released to

the public. At the time, we were using the BeagleBone Black to prove that this class of SBCs

could handle the computing required in a DMI. Since then we abandoned the BeagleBone

Black and decided to migrate Prynth to the Raspberry Pi (RPi).

The second paper is titled “The Mitt: case-study in the design of a self-contained instru-

ment” (Franco and Wanderley 2016), presented at the 12th International Symposium on

Computer Music Multidisciplinary Research (CMMR 2016), which took place at the Uni-

versity of São Paulo in Brazil. In this paper we described The Mitt (see section 6.2.1), the

first instrument to use the Prynth framework. The initial goal of this paper was solely to

present this particular DMI, but the vivid discussions we had with our peers during the

conference led to an early showcase of Prynth as the underlying technology that made the

Mitt possible. The reception was so enthusiastic that we were invited by the committee to

further develop our paper for the extended notes of CMMR 2016, published by Springer.

This extended paper was then retitled “Prynth: a framework for self-contained digital music

instruments” (Franco and Wanderley 2017).

4. Dissemination activities—the dissemination of the Prynth framework resulted in many other

parallel activities, including public presentations, press articles and participations in concerts

and art festivals.

5. Instruments built with Prynth—a collection of instruments built using the Prynth frame-

work, allowing us to examine the individual goals of users and how our tools respond to their

needs.

6. Discussion—a critical reflection on the advantages of Prynth’s embedded DMIs and potential

avenues for future research.

1.4 Collaborators 7

1.4 Collaborators

During the Winter of 2018, three graduate students contributed to the development of the Prynth

framework. The first two were Harish Venkatesan and Ajin Tom, two students of McGill’s music

technology master in arts. They created an instrument with Prynth for Marcelo Wanderley’s class

and later we discussed possible improvements and new features of the framework. Venkatesan and

Tom offered their help and this boost in manpower allowed us to invest in a full reimplementation

of the acquisition system, adding support for digital sensors, more advanced data processing

and the revision of communication protocols. We also improved Prynth’s code editor and added

important interaction features, such as parenthesis matching actions and syntax highlighting.

Their contribution is reflected in sections 5.6 and 5.9.8. The third collaborator was Antoine

Maiorca, an exchange student from Université of Mons in Belgium. Maiorca was in charge of

researching technologies for Prynth’s graphical user interfaces (GUI) and implementing a functional

prototype. After some iterations, we reached a satisfactory model, later polished and included in

the official Prynth distribution. Maiorca’s work is reflected in section 5.9.1.

1.5 Structure of the Thesis

This thesis is divided into the following chapters:

• Chapter 2—“Background”: introduces computer music research and its path towards the

development of DMIs.

• Chapter 3—“Limitations of DMIs”: discusses some of the limitations of the current generation

of DMIs, with special emphasis on those that derive directly from the use of traditional

computers.

• Chapter 4—“Embedded Digital Musical Instruments”: starts by defining what is an embed-

ded DMI, after which it presents the technologies that could be used in the construction of

such instruments and the state of the art, constituted by a selection of cases that include

8 Introduction

both instruments and development frameworks.

• Chapter 5—“Prynth: a Framework for Embedded DMIs”: describes the features and technical

implementation of the Prynth framework.

• Chapter 6—“Results”: gathers all the results from the Prynth project, including dissemina-

tion activities and several instruments built by users.

• Chapter 7—“Discussion”: presents a reflection about the reasoning behind Prynth’s architec-

ture and how the framework addresses some of the problems identified in chapter 3. We also

discuss Prynth’s strengths and weaknesses and how it compares to competing frameworks.

Finally, we suggest future directions of research on embedded DMIs.

9

Chapter 2

Background

In this chapter we offer a brief overview of the evolution of computer music and discuss some of

the unique qualities that make the computer an important tool for electronic music. Armed with

this knowledge, we can better understand the context that led to the development of DMIs. We

draw special attention to how these instruments fulfill an important role of bridging human and

machine, by focusing on human gesture, language and intention. DMIs allow computers to be used

in ways that are closer to more traditional instruments, resonating deeply with musicians whose

learned skills are deeply related to an embodied interaction.

2.1 The Experimental Nature of Electronic Music

Even with almost a century of history, electronic music continues to evolve. It is in constant

motion, following the frantic rhythm of its technological foundations. Researchers and companies

continue to invest in the fields of digital signal processing, human-computer interaction (HCI) and

artificial intelligence with the goal of creating better musical tools. In turn, artists continue to

find new creative avenues in composition, performance and co-creation with machines.

Electronic music is an art form that is intrinsically connected to experimentation. Its appeal

resides exactly in the discovery of the new: a search for intellectual and emotional challenge. To

meet this challenge, the musician must chart new territories of artistic expression and be willing

10 Background

to try, fail and reiterate. Any electronic musician could comfortably sit between the artist and the

scientist.

This thesis is the reflection of a research imbued with this spirit. It proposes the new, crossing

into the field of speculative design. It tries to imagine a possible future for digital musical instru-

ments, by offering the tools to shape what that future could look like. But to speculate about the

future, we must first look into the past and understand the path that led us here and now.

2.2 From Mainframes to Laptops

In 1928, Lev Termen invented the Theremin, considered one of the first electronic music instru-

ments and a symbol of the promises of technological progress. An instrument played in the air,

without physical contact, surely supported Arthur C. Clarke’s law that “any sufficiently advanced

technology is indistinguishable from magic” (Clarke 1982). The Theremin won some notoriety

with the acclaimed virtuosic performances of Clara Rockmore and was also used to create some of

the signature sounds of Hollywood’s science fiction and horror movies of the early 1050s. Never-

theless, the Theremin and other early instruments, such as the Telharmonium, the Trautonium or

the Ondes Martenot, remained largely unknown to the larger public. The more serious inception

of electronic music happened by the early 1050s, with the emergence of three academic schools:

• The French, led by Henry and Schaeffer at the studios of Radiodiffusion Française (RDF),

exploring the manipulation of closed loop records and magnetic tape in the creation of

Musique Concrète.

• The German, associated with the development of analog synthesis at the radio studios of

Westdeutscher Rundfunk (WDR) in Cologne, with composers such as Karlheinz Stockhausen

and Gottfried Michael Koenig.

• The American, with Max Mathews at Bell labs creating the first computer programs to

generate sound.

Naturally there were other important contributors to electronic music, like the British at BBC

2.2 From Mainframes to Laptops 11

or the Japanese, with the inception of companies like Yamaha and Korg. The strict categorization

of these early schools is slightly reductionist, and although there was an inevitable cross-pollination

between establishments, it shows the relations to particular technologies and its consequence to

musical aesthetics. The French became the precursors of what can now be considered sampling,

the German of analog synthesis and the American of digital synthesis.

In this historical panorama, computer music is often considered to be a later effort in the genesis

of electronic music, probably due to the expensive and heavy monolithic mainframes of the time,

where the computation of the simplest algorithm could take hours or even days. But no matter how

cumbersome or inconvenient, computers were quickly embraced by those who had access to them.

The computer became a strong bridge for the formalization of music as mathematics, reflected in

the work of Iannis Xenakis (Xenakis 1992) and Gottfried Michael Koenig (Koenig 1983), who were

among the first composers to pursue algorithmic composition. The computer was also capable

of rendering entirely synthetic sounds, detached from the impositions of nature’s mechanic and

acoustic phenomena. Jean-Claude Risset pioneered the extensive use of synthetic sound generated

with the computer.

It is beyond our scope to extensively present all the details of early computer music. For

those interested, we point to the comprehensive texts of Joel Chadabe (Chadabe 1997), Peter

Manning (Manning 2013) and Nick Collins (N. Collins et al. 2013). We will instead jump forward

a few years and discuss the repercussions of the subsequent democratization of computers.

This next important period for computer music happened by the early 1980s, with the advance

of microprocessor technology and the commercialization of affordable personal computers. In the

market from 1983 to 1986, the Commodore 64 (C64) was one of the pinnacles of this era. It

had much better multimedia capabilities than the competition, outselling IBM, Apple, Atari and

Sinclair in their 8-bit home market. With a dedicated audio chip, the sound interface device

(SID) (Dillon 2015), it was capable of running three audio channels in parallel, each with an

oscillator (sawtooth, triangle, pulse or noise waveforms), amplitude envelope and ring modulation.

The resulting mix was then passed through a multimode filtering stage. The C64 also ran the first

12 Background

software sequencers, called music trackers, characterized by their vertical timeline arrangement.

Their interfaces were similar to a modern spreadsheet application, with arrays of cells with numeric

data that progressed over time, similarly to a music box. These trackers could also be used

to send control data to external gear via musical instrument digital interface (MIDI) protocol

(MIDI Manufacturers Association 2018). With these revolutionary multimedia capabilities, the

Commodore 64 and its later rival, the Atari ST, became so popular that they gave birth to a unique

musical style called Chiptune (Leonard et al. 2014). Chiptune, characterized by primitive digital

synthesis, is still performed to this day, continuously attracting new musicians and audiences.

In the beginning of the 1990s, computers based on the IBM x86 architecture and coupled with

the popular Sound Blaster sound cards became the first viable systems for running full-fledged

audio sequencers. The Sound Blaster cards had a polyphony of up to 11 voices of frequency mod-

ulation (FM) synthesis. By this time Chowning’s technique (Chowning 1973) became one of the

most efficient solutions for timbre variety, leading to its extensive licensing in the multimedia mar-

ket. Later Sound Blaster versions went from 8-bit to 16-bit architectures, with full-duplex audio

at 44.1 kHz (compact disk quality) and incorporating Ensoniq’s wavetable solutions, commonly

used as a cheap alternative to hardware samplers.

Desktop computers, sound cards and sequencers kept evolving to become de facto tools in

professional sound studios. Together with the widespread Internet access, they also opened the

doors for the concept of an affordable home studio, allowing almost anyone to compose, perform,

produce and distribute music.

Software virtualization is another technology that became fundamental to the digital audio

workstation (DAW). All modern sequencers can incorporate processing from third-party software

modules, commonly called plug-ins. These emulate audio processors, like a reverb or a compressor,

or instruments, like a violin or a hardware synthesizer. They typically have a front end GUI that

mimics their hardware counterpart through a skeuomorphic design. Using the DAW, a user can

instantiate plug-ins at will and arrange them into serial or parallel audio processing chains, in

the same fashion as audio engineers did for decades with hardware devices and patching of audio

2.2 From Mainframes to Laptops 13

signals.

While the revolution of the recording studio was taking place at home, academic computer

musicians kept investing in advancing algorithmic composition and synthesis languages. Since

his early efforts in the late ’50s, Max Mathews kept developing new versions of Music-N lan-

guages (Manning 2013), which in turn became models for other domain-specific languages (DSL)

of the 1980s and the 1990s. These include CMusic by Richard Moore (Moore 1982), CMix by Paul

Lansky (Lansky 1990), and Csound by Barry Vercoe (Vercoe 1993). Another notable derivative

of Music-N languages was Common Lisp Music (Schottstaedt 1994). Lisp was frequently used

in algorithmic compositions of the Serialist tradition because it facilitated the representation and

transformation of arrays with musical data like pitch or duration.

Although these languages had their differences in syntax and architecture, they all shared the

same underlying model where the user would write musical programs split into two components:

an arrangement of DSP blocks defining a proto-orchestra of synthesizers and a score to play

those same virtual instruments. A compiler would then process the source code and output the

corresponding sound file. This procedure could take from minutes to hours, and only after its

completion could the composer hear the resulting sound.

All of the Music-N derivatives established themselves through a significant following by aca-

demic composers. Some are still seeing improvements to this day, especially Csound, which has

since integrated real-time processing and more recently reinvented itself as a library to be used

in conjunction with other programming languages (Lazzarini, Yi, Timoney, et al. 2012; Lazzarini,

Yi, Fitch, et al. 2016).

The next significant step in computer music was the advent of real-time DSP. Although previ-

ously demonstrated with mainframe computers, it was only by the mid-1990s that real-time DSP

became a reality for most users. With it, new interaction paradigms and programming languages

emerged. The computer could now become not only a composition tool but also an interactive

instrument.

One important software of this era was Max (Cycling ’74 2018), developed by Miller Puckette

14 Background

in 1988, at the Institut de Recherche et Coordination Acoustique/Musique (IRCAM). Originally

called Patcher, Max was first developed to control IRCAM’s Sogitec 4X synthesis system (Puckette

2002) over MIDI. The big novelty in Max was visual programming (Puckette 1988). Musicians

could now write algorithms using a patching system, creating complex programs from smaller func-

tional black boxes that were connected using virtual cables. Visual programming opened the doors

of computer music to less experienced programmers, quickly becoming one of its lingua francas.

In 1989 IRCAM developed the IRCAM signal processing workstation (ISPW), an expansion DSP

hardware that, when combined with the NeXT computer, allowed for real-time audio processing

in Max (Puckette 1991). By 1990, Opcode Systems licensed Max and developer David Zicarelli

took over the refinement of Max for commercial purposes. By 1996, as real-time processing ad-

vanced, Puckette released the first versions of Pure Data (PD) (Puckette 1997), an open-source

alternative to Max that brought to general-purpose computers the same DSP capabilities that

were before only possible with the ISPW platform. By 1997 Max had also added audio processing

in the form of a library called “Max Signal Processing” (MSP). With Max/MSP and Pure Data

musicians could now develop all kinds of audio synthesis and processing using lower-level objects

such as signal generators, filters and delay lines. Furthermore, these audio processes could now be

strongly tied to interactive behaviors, which would pave the way for Digital Musical Instruments.

After this period Max continued to evolve, adding new functionalities, including video processing

through Jitter, a package for matrix calculation and vector graphics, and a software development

kit (SDK), allowing third-parties to create their own sets of objects called "externals".

In parallel with Max and PD, another notable software that had much influence in the de-

velopment of interactive music systems was SuperCollider (McCartney 1996; McCartney 2002).

Created by James McCartney in 1996, SuperCollider is a scripting language with similarities to

Smalltalk and C, making it more akin to Music-N languages than dataflow languages. Unlike

Max or PD, SuperCollider contemplates the dynamic management of real-time audio processes.

It uses an architecture where a virtual machine interprets and executes new programs on-the-fly,

contrarily to the compilation stage required in more traditional software. Dynamic programming

2.3 Idiosyncrasies of Computer Music 15

adds extreme flexibility to interactive music systems because it allows the creation and destruction

of DSP processes during performance and without interruption. Since its inception, SuperCollider

has seen three major revisions, with the latest becoming freeware and open-source. Like Max

or PD, SuperCollider is highly extensible, and its developer community continues to enhance its

features.

Innovation in software was accompanied by its hardware counterpart. The increase in compu-

tational power led to a consumer market with affordable computers that had enough power for

real-time DSP processing. These machines also became much smaller and thus portable, easily

finding their way onto musical setups and stage performances in the form of laptop computers.

One of the landmarks in this new generation of computers was the Powerbook G3, an Apple Mac-

intosh laptop commercialized between 1997 and 2000, which became almost omnipresent in most

computer music performances of the time.

This is a very short overview of the history of electronic music, omitting many important

details and people for the sake of brevity. It does however offer a glimpse of the path that led

to the more widespread adoption of computers in music and the creation of the tools and base

technologies that would form the foundations of computer music.

2.3 Idiosyncrasies of Computer Music

With the widespread access to computers and mature software, computers became an essential

tool in music production. Today any recording studio uses the computer as a central control unit.

Producers use virtual plug-ins not only to mix and master sessions, but also creatively, with heavy

use of particular software instruments or audio processing techniques that become blueprints for

specific music styles. A good example is Dubstep, a genre that evolved in the end of the 1990s

from early UK styles like 2-Step and Drum ’n’ Bass. This type of dance music uses a specific set of

techniques, like basses with heavy sawtooth waveforms that are filter-modulated to create a wob-

bling effect. Many different synthesizers can accomplish these effects, but producers often point

to a specific virtual instrument—Massive by Native Instruments (Native Instruments 2018). The

16 Background

connection between Massive and the Dubstep musical style is evident in the amount of YouTube

videos explaining how to accomplish the wobble effect on that particular software instrument. An-

other example is the Auto-Tune plug-in, commercialized by Antares Audio Technologies (Antares

2018). This effect was originally developed to correct slight pitch deviations in vocal material, but

modern producers soon discovered that extreme parameters created a robotic vocal effect simi-

lar to Moog’s vocoder (Bode 1984). The subversion of the original intention of this plug-in saw

extensive creative use by artists such as Cher and late 2000s hip-hop act T-Pain.

The computer not only left a mark in popular music production but it has also profoundly

impacted experimental music. Those more inclined to the exploration of unconventional sonic

territories see the computer as a door that opens to a new world of possibilities. The more signif-

icant of these new possibilities is probably the creation of synthetic timbres. The main synthesis

method employed in early analog devices is commonly called subtractive synthesis, a source-filter

model where a combination of unit generators form a sound source that passes through an equally

arbitrary combination of filters to shape its spectrum. Subtractive synthesis is probably the most

disseminated synthesis method. It has been in use for 50 years and musicians have mastered its

intricacies and techniques. Similarly to the analog synthesizer, the computer can also perform

subtractive synthesis, with the difference that it can easily surpass the limited number of gener-

ators and filters that are viable through analog circuitry. But the real strength of the computer

lies in its ability to perform mathematical calculations and run complex algorithms used in more

advanced sound synthesis, such as granular synthesis (Roads 2004), physical modeling (Karplus

et al. 1983; Smith 1992) or the phase vocoder (Flanagan et al. 1966; Portnoff 1976).

Granular synthesis relies on the playback of very small sound fragments (the grains) at ex-

tremely high frequencies, producing an auditory illusion of continuity, a technique that could find

its analogy in Pointillism from visual arts.

Physical modeling simulates sound sources and resonant bodies to replicate natural acoustic

phenomena. Although the original goal of physical modeling was to achieve compelling simulations

of acoustic instruments, musicians have also used its principles to create fictional instruments that

2.3 Idiosyncrasies of Computer Music 17

are only virtually possible, like a wind instrument with an extremely long pipe or a string that

can vibrate for much longer than its real-world counterpart (Eckel et al. 1995).

The phase vocoder allows for the direct modification of sound spectra. Using the fast-Fourier

transform (FFT) to convert a sound between its temporal and spectral domains, it is possible

to modify the phase and amplitude content of particular frequencies and finally resynthesize the

sound for playback. The most common uses of the phase vocoder are independent time stretching

or pitch shifting, but as with physical modeling, musicians have creatively explored its possibilities

to sculpt unusual sounds.

Algorithmic composition (Essl et al. 2007; Edwards 2011) is another practice that is deeply

related to the possibilities of the computer. This type of musical composition uses mathematical

algorithms to create musical scores. Instead of a linear score, the composer develops a computer

algorithm that will produce music according to specific rules. The origins of music composition

as mathematics date back to the serialist tradition of composers like Schoenberg, Webern and

Boulez, using permutations of an arbitrary fixed number of values to create all the notes of a

musical piece.

The use of mathematical modeling in computer music also provides a handle to the inclusion

of other scientific fields, like computer science, biology or physics, and it is common in today’s

musical pieces to use fractals, stochastic models, genetic algorithms or artificial intelligence.

Artificial intelligence is another field of particular interest to music because it represents the

possibility of machines participating more actively not only in music composition but also per-

formance. Examples of computers that play music with humans include the commercial Band In

A Box (PG Music Inc. 2018), offering a full accompanying virtual band that can play numerous

popular styles like Jazz, Rock or Bossanova, to more complex systems developed in academia, like

Rob Rowe’s Cypher (Rowe 1992) that explores the computer as an active player that can listen,

comprehend and react to musical input from human performers.

Another important feature of the computer is connectivity. Virtually any modern computer

includes networking technologies such as Ethernet, Wi-Fi or Bluetooth, through which it can

18 Background

connect to other computers or the Internet. Mobile devices can access cellular networks anywhere

and at anytime, inferring their precise location via satellite connection to the global position

system (GPS). Computer music has incorporated all of these technologies, from ensembles that

share musical data through local or remote networks (Barbosa 2003), to interactive audio guides

that deliver audio content according to the users geographic location (Gaye et al. 2006).

These examples represent just a small fragment of the many idiosyncrasies of computer music.

They offer opportunities for artistic creation that are not possible with other musical instruments.

They also demonstrate how the computer can become a valuable tool for musicians interested in

experimental music and the crossing to other knowledge domains that could contribute to new

forms of composition and performance.

2.4 Performing with Computers

The consolidation of computers as musical machines and their increasing presence on stage also

gave origin to new types of performance practices. The concept of laptop performance implies that

the computer surpasses its function as an accessory, to instead become the main (and sometimes

sole) instrument of a musical performance. A typical laptop performance consists of the real-

time manipulation of synthesis parameters on a computer program, such as a sequencer or a Max

patch. These interactions are generally conducted via traditional computer interfaces, like the

mouse, keyboard and display.

The interaction with traditional computers involves the use of windows, icons, menus and

pointers (WIMP), which present serious limitations regarding the performative gestures and mu-

sical styles they permit. A virtual instrument or audio effect will often have a GUI, with spatially

distributed buttons, sliders or dials that are mapped to single parameters. The user moves the

pointer via mouse to a specific control point on the GUI, clicking and dragging it to modify values.

In this scenario, the user can only control one parameter at a time and multidimensional control

is often left to predefined automation. We will further discuss the topic of mapping in digital mu-

sical instruments, but for now, we will simply point to the work of Andy Hunt and collaborators,

2.4 Performing with Computers 19

who have conducted in-depth studies about the importance of multi-parametric and cross-coupled

mapping (Hunt, Wanderley, and Paradis 2003). Input accuracy is also limited by the resolution

of the mouse and display, which could also impact the ability for rigorous continuous control.

The losses in multi-parametric and sensible input are greatly compensated by the flexibility of

the medium, where composers and performers are free to choose software with radically different

interfaces and interaction models. Those capable of programming their own software using lan-

guages like Max or SuperCollider can achieve even greater sonic variety and explore the freedom

of creating their own modus operandi. Since there are so many distinct approaches to computer

music performance, specific techniques often tend to become trademarks for particular artists or

subgenres. One good example is the work of Autechre, the English duo of Rob Brown and Sean

Booth, who by the mid-1990s created some of the music that was later described as essential to all

of the subsequent post-digital and glitch scene. Autechre incorporated generative and algorithmic

processes in their music, pushing to a greater audience new perspectives on musical structure.

Many people had never heard such music and were naturally curious about the processes behind

such fresh sonic results. During the following years, Autechre’s techniques became a topic of

discussion among electronic musicians, until it finally came to light that Brown and Booth were

developing their own software, using an obscure program called Max (until then somewhat con-

fined to academic circles) and that it would be difficult (if not impossible) for others to reach the

same exact results.

Given all this diversity, it is useful to understand if there is a possible categorization of ap-

proaches to interactivity in laptop performance. Joseph Malloch and colleagues have taken Jens

Rasmussen’s models for human information processing (Rasmussen 1986) and extrapolated them

to a possible categorization of interaction models for digital musical instruments, divided into

skill-, rule- and model-based models.

“Briefly, skill-based behavior is defined as a real-time, continuous response to a

continuous signal, whereas rule-based behavior consists of the selection and execution

of stored procedures in response to cues extracted from the system. Model-based

20 Background

behavior refers to a level yet more abstract, in which performance is directed towards

a conceptual goal, and active reasoning must be used before an appropriate action

(rule- or skill-based) is taken” (Malloch, Birnbaum, et al. 2006).

This categorization is useful because it highlights one of the main aspects of laptop perfor-

mance. They often tend to fall more into a category of rule- and model-based interactions, since

the musician fulfills the role of a conductor that operates a machine through complex semiotics. In

contrast, the direct manipulation of a tactile sound-producing object, such as any traditional musi-

cal instrument, relies heavily on skill-based interactions dependent on the dexterity and embodied

knowledge of the player.

Another important aspect of laptop performance is that it doesn’t strictly require energy input

from the performer. Ultimately, the computer has the ability to keep playing without any human

intervention. Even when it requires motor action, the spatial ranges of the mouse and keyboard

are quite narrow. Additionally, the computer is often placed on a table, in a stationary position.

This leads to a considerable reduction of mobility on stage, since the computer requires almost

constant visual focus. Due to this low amplitude of gestures, it becomes difficult to establish a

clear causality between gesture and respective sonic output or to observe any ancillary gestures or

emotional expressions of the performer.

2.5 Causality, Ritualism and Expression

Kim Cascone, one of the early proponents of laptop music, recognizes the problem of establishing

causality in electronic music:

“Unfamiliar codes used in electronic music performance have prevented audiences

from attributing ‘presence’ and ‘authenticity’ to the performer ... During laptop per-

formances, the standard visual codes disappear into the micro-movements of the per-

former’s hand and wrist motions, leaving the mainstream audience’s expectations un-

fulfilled” (Cascone 2003).

2.5 Causality, Ritualism and Expression 21

Without meaningful gestures or an understanding of causality, a laptop performance (like

acousmatic music before it) tends to shift the focus to the musical content and to be less con-

cerned about the means of creation. This concentration on audition is conducive to activities

like deep listening, a term coined by Pauline Oliveros (Oliveros 2005) to refer to a mindful act

of listening that requires attention and a meditative state of mind. People engaged in deep lis-

tening often close their eyes to shutoff any visual stimuli. Cascone calls it an “active reception”,

as opposed to a “distracted reception”, characterized by the immediate gratification of popular

entertainment (Cascone 2003).

While this reasoning certainly constitutes a valid artistic manifesto, it is impossible to deny that

laptops defy the conventions of stage performance. For most people, a concert is the opportunity

to witness the exquisite instrumental skill of individuals that embody that particular music. It is

also not an individualistic experience. Instead, it fulfills a social function and the reward is the

shared celebration of artistic talent.

Garth Paine argues that live music “is far more than purely entertainment; it is a ritualized

form of collective conscience, a rare opportunity within modern Western society for communal

catharsis” (Paine 2009).

Marc Leman also sees live music as a social and ritualistic activity that generates “human

attraction and an urge for interaction”. People are “energized” and empowered by the rewarding

of their expectations, fundamental to Leman’s models for expressive interaction.

“Expressive interaction with music thereby relies on the remarkable capacity of

humans that they are able to align movements with sounds ... in music performance

we are dealing with corporeal articulations that are time-critical and fine-motoric, often

in combination with physical effort and in relation to mediating roles of motivation

and reward systems” (Leman 2016).

These rewards relate to our capacity to anticipate the outcomes of a musical gesture executed

by the performer, something that is almost impossible in laptop performance.

22 Background

Laptop performances can also present limitations in terms of musical style. Most rule- or

model-based performances depend significantly on prepared materials, so it becomes difficult to

improvise or to play music that depends on fast and radical shifts. Furthermore, most computer

interfaces cannot capture the finesse of micro-gestures, like the ones used for producing a vibrato

on the violin or ghost notes in percussion.

“It is critical that new instruments be developed that facilitate and nurture this

expression, musical instruments that facilitate subtlety and nuanced expressivity of

the same granularity as traditional acoustic musical instruments” (Paine 2009).

Computer music performance seems stuck in a conflict of principles and aesthetics related

to who should occupy the central role: the human or the computer. While some defend that

physicality is irrelevant because the machine could perform much faster and accurately, others

consider that traditional computer interfaces are not only insufficient to some forms of musical

expression but also less rewarding to an audience. The latter group embarked on a quest for

physicality in computer music, eventually leading to considerable research on haptic interfaces

that could bring human skill back into the equation.

2.6 Haptic Interaction

Human-computer interaction is a discipline that studies the methods through which humans inter-

act with computers, combining knowledge from computer science with fields like cognitive science

and design. Its primary objective is to provide novel interaction models that would contribute to

increased usability in computer applications.

Music seems to be a natural candidate for experimentation in the HCI field, particularly in

regards to tangible interaction. This can be observed in the work of the early proponents of tangible

interaction: Bill Buxton (Buxton 1977; Buxton et al. 1978), George W. Fitzmaurice (Fitzmaurice

1996) or Joe Paradiso (Paradiso 1997).

2.7 Musical Controllers 23

In the Tangible Bits project, Hiroshi Ishii introduced the notion of physical objects as potential

handles to digital information, defending the cultural importance of instruments and the need to

reflect on the value of their tangibility.

“Long before the invention of personal computers, our ancestors developed a va-

riety of specialized physical artifacts to measure the passage of time, to predict the

movement of planets, to draw geometric shapes, and to compute ... We were inspired

by the aesthetics and rich affordances of these historical scientific instruments, most of

which have disappeared from schools, laboratories, and design studios and have been

replaced with the most general of appliances: personal computers. Through grasping

and manipulating these instruments, users of the past must have developed rich lan-

guages and cultures which valued haptic interaction with real physical objects” (Ishii

et al. 1997).

Buxton constantly refers to the importance of artists and musicians in HCI research, alluding

to how performers might be responsible for the most demanding scenarios in interaction design.

“... there are three levels of design: standard spec., military spec., and artist spec.

Most significantly, I learned that the third was the hardest (and most important), but

if you could nail it, then everything else was easy” (Buxton 1997).

The justification for Buxton’s remarks lies in the fact that traditional computer interfaces are

not up to par with the skill of trained performers. They are not able to capture human gesture

with enough finesse to fully conduct the performer’s artistry. Therefore we should invest in the

development of computer interfaces that empower those skills, so musicians might take better

advantage of a competence earned through years of practice.

2.7 Musical Controllers

Tangible interfaces are a significant part of how we interact with a computer. They are the physical

input devices through which the user operates the machine. Though the keyboard and the mouse

24 Background

are still the most common input devices, there has always been a considerable investment in

the creation of alternative tangible interfaces. They can increase usability by being specifically

designed or adapted to particular tasks. A computer flight simulation is more realistic when

controlled by a joystick. With a graphics tablet a visual artist can draw more naturally on the

computer. Professional video editors use jog wheels to more efficiently shuffle video footage in

editing software.

One of the first input devices for computer music was developed by Max Mathews. The Radio

Baton (Mathews 1989; Mathews 1991) was composed of a horizontal electromagnetic plate that

was used to track two handheld batons in tridimensional space. Mathews used the Radio Baton

as an expressive controller for GROOVE (Mathews and Moore 1970), the first computer program

to control a synthesizer in real-time.

Another early example of alternative input devices in digital synthesizers was the light pen, a

digitizing device with the format of a regular pen and that was used to draw directly on cathode-ray

tube (CRT) screens. Peter Vogel and Kim Ryrie used the light pen to control the Fairlight (Levine

et al. 1980), one of the earliest fully digital sampler systems. Xenakis also adopted the light pen

to draw interactive musical scores for the Unité Polyagogique Informatique du CEMAMu (UPIC)

system (Lohner 1986).

The video game industry was perhaps one of the most important proponents of the commer-

cialization of alternative input devices. The light gun, using a principle similar to that of the

light pen, was commonly used in shooting games. Joysticks were often used in flight simulators

and steering wheels combined with foot pedals in automotive games. The Power Glove (Zeltzer

et al. 1994), developed by Mattel for the Nintendo Entertainment System, was a low-cost version

of the types of gloves used in virtual reality. It was capable of detecting the inclination, finger

flexure and spatial position of the hand. Power Gloves are still often sought-after in the secondary

market of vintage controllers. Guitar Hero (K. Collins 2008) was a series of rhythm music games

developed by Harmonix and Red Octane in the mid-2000s. They were played using toy controllers

that resembled musical instruments, like the guitar or the drum kit. A few years later, the gaming

2.7 Musical Controllers 25

industry introduced motion sensing. The Wii controllers (K. Collins 2008), developed by Nintendo,

were a pair of wands resembling Mathews’ Batons, capable of detecting position and orientation of

the player’s hands. Microsoft developed the Kinect (Zhang 2012), a full-body gestural tracker for

the Xbox video game console. The Kinect used the time-of-flight of a cloud of projected infrared

points to virtually recreate the skeletal positions of up to 4 players that controlled video games

via free body gestures, similarly to playing the Theremin. Over the years, many of these video

game controllers were repurposed so they could be used in musical applications.

In parallel with these industries, musicians also developed their own input devices for the

computer. The greatest catalyst for the development of digital musical controllers happened in

the beginning of 1983, with the formulation of the musical instrument digital interface standard,

commonly abbreviated as MIDI (Moog 1986). This type of interface would enable electronic

instruments to interconnect and share control data. The most immediate use case was that a

single controller could now be used for the manipulation of several external sound synthesis and

effects units.

The musical keyboard quickly became the most popular MIDI controller, since it represented

a known interface that many trained musicians could already play. The bias towards the keyboard

is obvious in the MIDI specification itself, which is designed around the abstraction of the piano

and the pitches of Western music. MIDI notation is often represented in DAWs using a piano

roll metaphor. But these limitations didn’t keep MIDI from growing into the lingua franca of

interactive devices and to become widely adopted even in non-musical applications, such as stage

lighting, robotics, video playback or laser shows. As MIDI grew, manufacturers also created many

other musical controllers: mixing consoles, breath controllers, drum pads and many others.

Computers quickly became central to the MIDI workflow. Software could be used to more

efficiently control, record and playback performances with synthesizers. MIDI tracks can be easily

edited or overdubbed with new parameters, offering great control and precision in the studio.

Swapping instruments or adding further instrumental layers became a trivial matter. MIDI data

could also be easily transformed by mathematical operations, facilitating musical processes like

26 Background

transposition, filtering or harmonization.

With external digital controllers, control became independent from sound source. A percus-

sionist or a saxophonist could now use their skills to play synthetic sounds and even control sound

parameters other than musical notes. All this flexibility led to the creation of custom setups and

idiosyncratic musical practices that were heavily based on the expert use of musical controllers.

2.8 Digital Musical Instruments

As new musical interfaces quickly became an active discipline of academic research, one of the first

significant surveys in this area was Trends in Gestural Performance of Music, where Wanderley

and Battier (Wanderley et al. 2000) gathered publications on the most relevant research tendencies

and organized a round table discussion with several of the pioneers of electronic music, including

Bill Buxton, Bob Moog, Max Mathews and Michel Waisvisz.

In 2001 a workshop dedicated to HCI and music was held at the Association for Computing

Machinery Conference on Human Factors in Computing Systems. Having attracted a considerable

audience, the organizers decided to establish it as an annual academic conference titled “New

Interfaces for Musical Expression”. During the years following the inception of NIME, we would

witness an immense growth of new instruments using alternative controllers combined with the

computer, from here onward referred to as digital musical instruments, as defined by Miranda and

Wanderley:

“An instrument that uses computer-generated sound can be called a digital musical

instrument (DMI) and consists of a control surface or a gestural controller, which drives

the musical parameters of a sound synthesizer in realtime” (Miranda et al. 2006).

The separation between sound source and control mechanism allows musicians to create their

own instrumental setups from the combinations of different controllers and software. Moreover,

the user decides how the controller will influence the synthesis parameters. This flexibility and

creative freedom is even further extended by the capability of developing custom controllers or

2.9 The Architecture of a DMI 27

software. It is undeniable that DMIs provide a fertile ground for experimentation through the

ability to customize or even create whole new instruments.

DMIs also add fresh perspectives to computer music performance because musicians cannot

only create new sounds but also new ways of playing them. From an artistic standpoint, the

effort and expertise required to play the instrument becomes as relevant as the sound it creates.

The instrument itself may also acquire artistic significance. For example, it might have a form

factor that favors theatrics in detriment of efficiency or ergonomics. In essence, DMI performances

recontextualize and attribute new meanings to the relationship between object and actor in live

computer music.

2.9 The Architecture of a DMI

Most DMIs share the same fundamental model: the user manipulates an external controller that

sends control messages in real-time to an audio software running on a computer.

All musical controllers have some form of embedded sensing to infer how the instrument is being

played. Sensors monitor changes in mechanical, thermal, magnetic, electric or chemical properties

and generate output signals to quantify those properties. Inside the controller, an electronic circuit

reads the sensor signals and sends them to the computer as control values.

Sensors can be either analog or digital. Analog sensors will output a signal in the form of a

variable voltage, so using them with a digital system requires a conversion stage. This operation is

done using an analog-to-digital converter (ADC), a component that digitizes the analog values and

transforms them into digital data. Digital sensors autonomously perform this same operation using

integrated components. They readily output digital signals, which can be transported through

digital data buses, such as the standards serial peripheral interface (SPI) or inter-integrated circuit

(I2C).

The musical controller incorporates electronic circuits dedicated to sensor signal acquisition,

data processing and communication with the computer. The central component of these circuits is

a microcontroller. These small and cheap integrated circuits have a dedicated processor, memory,

28 Background

digital-to-analog converters (DAC) and addressable input/output (I/O) pins. They can handle

mixed-signals (analog and digital) and exchange data with other devices using standard serial

communication buses.

Microcontrollers are scaled for embedded applications and are much simpler and cheaper than

computers. They also operate very differently. While computers can run several concurrent

processes, managed automatically by the operating system (OS), the microcontroller can only run

one program at a time. It does not have an operating system and is usually dedicated to smaller

tasks. Since there is no concurrency in microcontrollers, they are optimal for applications that

require deterministic processing. Determinism could be defined as the ability to control the flow

of the program and assure the completion of tasks with precise timing and no jitter. Assuring

determinism is crucial to musical controllers because they need to have a consistent behavior, even

if the response is not the fastest or the most precise.

The microcontroller can also be used to apply mathematical transformations to raw sensor

data, in order to reduce noise, rescale values or transform the data into more meaningful forms,

like for example converting a vector between cartesian and polar coordinate systems.

After data conditioning, the microcontroller must encapsulate said data into a digital protocol

understood by the computer, the most common being MIDI and open sound control (OSC) (Wright

2005). There are also different ways to connect a controller to a computer. MIDI’s serial data can

be sent via 5-pin Deutsches Institut für Normung connector (DIN) and universal serial bus (USB)

cables, or using radio frequency transmission via wireless protocols, such as Wi-Fi or Bluetooth.

OSC is typically transported using computer network interfaces, via Ethernet or Wi-Fi protocols.

The computer runs a real-time sound synthesis software that listens to these communication

ports and internally routes the incoming data to specific musical parameters. Virtually any MIDI

or OSC compliant software can be used in a DMI, ranging from virtual instrument plug-ins, to

custom software developed in Max, PD or SuperCollider. The latter offer more possibilities in the

creation of customized systems. The user is free to define any aspects of the instrument, including

sound synthesis and mapping schemes, but also any other interactive behaviors of the device. A

2.10 Instrument Makers 29

DMI could offer additional forms of visual or kinetic feedback, for both aesthetic and functional

purposes, or automate certain musical processes, such as following a score, generating new musical

material or even co-playing with the performer.

2.10 Instrument Makers

The development of a custom DMI requires considerable knowledge in technical areas like pro-

gramming and electronics. At first glance this could seem like a daunting endeavor, especially to

those without a formal engineering training. Yet, the development of custom electronic music in-

struments is a stronger practice today than it ever was. The reason for this growth is a consequence

of two major factors: knowledge sharing and widespread access to technological markets.

The Internet has revolutionized communication and learning. It has fueled the expansion of

niche communities from all corners of the world, that can now communicate free from geographical

barriers. Interest groups altruistically share knowledge on topics they are passionate about, often

without any monetary compensation. Content channels such as forums, websites or video providers

abound with educational content that challenges the norms of more conventional pedagogy. From

new cooking recipes, to electronics or programming, it is almost certain to find individuals on the

Internet that are willing to explain, teach and coach. This cultural background became fundamen-

tal for the Maker community, a DIY subculture that is engaged in the independent development

of new artifacts, merging disciplines like arts, crafts, electronics and programming. Websites like

Make (Maker Media, Inc. 2018), Instructables (Autodesk, Inc. 2018) or Hackaday (Hackaday.com

2018) are excellent archives of this communal knowledge.

Global markets and the strengthening of worldwide distribution channels were also fundamen-

tal to this technological appropriation. Today any consumer can directly access many electronic

components that were once reserved to large scale manufacturing. Online distributors offer exten-

sive information about their products through digital catalogs and ship low volumes of components

directly to the consumer. Custom printed-circuit boards (PCB) can now be manufactured in low

quantities and delivered to the door in less than two weeks.

30 Background

The easy and cheap access to all of these resources became crucial to DMI makers, but the

levels of complexity involved in electronics development or computer programming could still be

discouraging for many, no matter their enthusiasm or autodidact skills. Higher-level development

frameworks serve these less experienced developers, so they can concentrate more efficiently on

reaching their goals. They can circumvent the hurdles of low-level development and possibly the

reinvention of a worst wheel. The Maker community is actively engaged in the production of said

frameworks, most of them freely shared with the public under open-source licenses.

2.11 Crafting a DMI

There are different motivations for the creation of a new musical instrument. The musician could

be interested in exploring a particular set of performative gestures, finding new forms to control a

specific type of sound synthesis or increasing engagement with an audience. Interesting instruments

can also emerge from the sonification of mechanical contraptions or the exploration of accidental

discoveries in electronics or programming.

Prototyping usually starts by understanding the relationship between the instrument’s prop-

erties and how they are going to be measured and applied as control signals. Knowing what to

measure conditions the selection of an appropriate set of sensors, which involves an evaluation of

technologies, complexity, cost and form.

The next step is to create electronic circuitry prototypes, usually done using breadboards or

veroboards, where components and cables can be easily connected or swapped. These prototype

circuits are sometimes sufficiently functional to test signal acquisition programs and sensing tech-

nologies. The choice of which microcontroller to use depends on many factors, but usually the

bottleneck in sensing applications is the number of analog inputs, since each analog sensor requires

a dedicated ADC channel.

The next stage is to develop the microcontroller program that will not only acquire the sensor

data but also condition and encapsulate it in a communication protocol. Here the developer is

interested in creating an efficient program that presents the lowest latency possible and minimizes

2.11 Crafting a DMI 31

data loss. When using a non-standard protocol, the data stream received by the computer has to

be parsed and reformatted into a protocol understood by the destination software.

If the instrument uses a commercial virtual synthesizer, the only remaining task is to map

the signals to the available control parameters. Custom applications developed in Max or Super-

Collider require additional steps, namely the elaboration of a synthesis scheme and possibly the

creation of more elaborate mappings or system interactions.

Once the system reaches its first functional versions, it is finally possible to play it and evaluate

the results. Typically this leads to an iterative phase of refinement of both controller and software,

which lasts until satisfactory results are met.

Theoretically, the development stage would now conclude, but in practice many of the afore-

mentioned tasks will still be required throughout the instrument’s life span. Many custom DMIs

demand continuous maintenance, due to their fragile construction or plain deterioration. Moving

parts or contact materials tend to degrade and need replacement over time. Electronic components

or cabling can also fail, in which case many instruments need to be reopened to trace errors and

substitute components, often a laborious and time-consuming process.

Many DMIs are designed for idiosyncratic artistic purposes and not necessarily for commer-

cialization. They serve individual goals, where factors like usability, reliability or production cost

become less relevant. But whatever the purpose of the instrument, a design stage could still benefit

from the principles and methodologies of user-centered design. In participatory design activities

there is an involvement of users and field experts in design activities. They are responsible for

testing prototypes and offering feedback based on their personal experiences. Participatory ac-

tivities could include the creation of non-functional prototypes or enacting possible interactions

via wizard-of-oz experiments. These activities are often sufficient to demonstrate design problems

that can be rectified before further investment. Texts on interaction design by authors Don Nor-

man (Norman 2013) or Bill Moggridge (Moggridge 2007) certainly offer knowledge and guidelines

that are applicable to DMI development.

32 Background

2.12 Conclusions

Computers have become essential tools for music production and performance. The fast-paced

progress of music technologies has had two fronts: utilitarian and artistic.

From a utilitarian perspective, computers made their way into music production studios and

became essential tools for sound recording, editing and mastering, rendering these tasks more

productive and precise. Expensive and monolithic hardware audio devices were substituted by

their cheaper and convenient virtual counterparts.

From an artistic standpoint, computers also propelled the creation of new forms of music. They

allowed us to hear purely synthetic sounds that were generated using novel synthesis techniques.

They were also used as tools for algorithmic composition, pushing the concept of music as a set of

rules and mathematical processes. Some of these compositions were true products of computation,

oftentimes surpassing the limits of human cognition or dexterity. Early computer-aided compo-

sitions were presented as acousmatic or electroacoustic music, with synthetic sound reproduced

from tape, compact disk or file.

With the advent of real-time DSP, musicians turned to the possibility of using the computer

like an instrument. DMIs offer innovative musical experiences to both audience and performers,

drawing closer to centennial traditions in stage performance and allowing for a more symbiotic

relationship between human and machine. Since then there has been a significant investment in

both applied and academic research with the objective of finding new strategies for musical control.

The industry responded with the standardization and commercialization of MIDI controllers, which

made DMIs widely accessible to a larger public.

One of the big advantages of DMIs is that they offer many levels of flexibility and customiza-

tion. Permutable combinations of controllers, software and mappings allow the musician to create

personal instruments that better serve individual workflows or artistic goals. With the increased

access to technological components and peer knowledge sharing, many musicians learned not only

to play but also develop their own DMIs.

33

Chapter 3

Limitations of DMIs

DMIs represent new ways of playing electronic music and a path to repositioning the human gesture

as an important aspect of computer music performance. They offer great flexibility, considering

they can be tailored to meet individual needs and be continuously upgraded to incorporate new

functionalities. From casual to professional users, DMIs serve many different target groups and

use cases.

Given all these advantages and possibilities, it is also pertinent to question the limitations

and weaknesses of DMIs. Why aren’t they more popular? Shouldn’t most musicians aspire to

explore this much creative potential? Shouldn’t companies be more interested in offering such

innovative products? We will discuss some of the weaknesses of computer-based instruments, to

later elaborate on how embedded computing could provide solutions to overcome them.

3.1 A Culture of Musical Objects

Before the computer, almost any activity related to music (except perhaps for singing or writing

a score) was intrinsically related to the manipulation of physical objects. Musicians have a long

tradition of interaction with instruments, including not only musical instruments but also many

other electric devices: microphones, sound processors, guitar pedals, amplifiers, cables, adapters,

signal converters, mixers, tape recorders, speakers or headphones. All these instruments (in their

34 Limitations of DMIs

broader sense) are self-contained, produce consistent results, and have a single and well-defined

function. In many instances, they can also be easily combined in a myriad of ways.

The cultural pull created by this heritage of self-contained and single-purposed devices is para-

doxically present in the design of most audio software. A large part of virtual audio plug-ins

emulate real-world devices. From vintage reverbs to pedal boards, most plug-ins have skeuomor-

phic GUIs that mimic their hardware counterparts. Software can also emulate physical activities

that are common in the studio, like routing signals with virtual cables or stacking processing units

on a virtual rack.

Although there are undeniable advantages to virtualization, like lower financial investment,

increased mobility or the shear possibility of having a large number of synthesizers on a single track,

we think they still work as mere substitutes for the real thing. If we were to give an unrestricted

choice between a virtual plug-in and a hardware device, many musicians would probably still

prefer the latter. This predilection might be related to particular properties of hardware, such as

sound quality or stability, but also from the fact that these are devices designed specifically for

music. They have a single purpose and a set of recognizable tangible affordances (Norman 2013),

therefore representing a more straightforward and clear embodiment of a musical activity.

We believe that this strong relationship between musicians and their tangible devices is never

going to fade away, so the question is: can computers claim their place as such objects within the

musician’s workflow? Can they be easily identified by their properties and function? We don’t

think so, which is even more evident in the case of DMIs. If we were to present a full DMI setup

(controller and computer) to any layperson and ask where is the musical instrument, they would

probably point to the controller. This means that the computer has no apparent relation with the

musical object. It is an external peripheral that only diminishes the autonomy and embodiment of

the instrument. This fragmented nature is a potential barrier to considering the DMI as a whole

and full-fledged instrument.

3.2 Cognitive Activities 35

3.2 Cognitive Activities

While external controllers and real-time processing brought important instrumental qualities to

computers, during the regular operation of a DMI, the user is still forced to use the computer’s

native interaction models. The development stage of a DMI involves tasks like programming

or configuring a virtual synthesizer, but even daily use requires at least starting the computer,

loading applications, routing data signals and finally testing that everything works. This is, of

course, optimistically assuming that there are no errors or unsolicited requests from the computer

itself.

Cognitive psychology is not our field of expertise, but we believe it is safe to say that interacting

with a computer involves mental models and cognitive activities that are significantly different

from the ones used when playing a skill-based musical instrument. Taking Rasmussen’s model

(see section 2.4), the computer’s operating system will always be closer to a rule-based system.

Modern computers are operated through sequential actions on objects. For example, correcting

the amplitude of a sound file implies the following sequence of operations:

• Locate and start the audio editing program.

• Locate and activate the open file command on the application menu.

• Navigate through a nested folder structure to find the desired file on the hard disk.

• Select and open the file.

• Navigate to a menu to find the amplitude correction function.

• Apply the amplitude correction with the desired parametrization.

• Save the file.

This modus operandi of the computer implies that, before any significant action, the user must

first build a functional mental model towards a particular goal, taking into account the rules of

operation. Most operating systems with GUIs also require the localization and interpretation of

visual information in the form of icons, directories and menus of WIMP interfaces.

36 Limitations of DMIs

Computers are also very intolerant to error. Any deviation from the rules of operation or even

a malfunction of the software, and the computer will simply refuse to work. The feedback for

these errors is usually in the form of technical (and sometimes indecipherable) jargon and the user

is prompted to engage in the construction of further mental models to solve them.

On the other hand, playing a skill-based musical instrument is a considerably different activity.

It involves the direct manipulation of mechanisms that provide real-time sonic feedback. There is

a parallel control of multiple variables and the player is engaged in a cycle of constant monitoring,

evaluation and control of the instrument’s state.

Furthermore, there shouldn’t be a wrong way to play instruments. They allow us to build our

own mental models, sometimes breaking the established rules of how to play them. In the case

of new instruments like DMIs, the user must actually go through an exploratory phase and learn

the characteristics of the instrument, so that appropriate playing techniques may emerge. To do

so, a musical instrument shouldn’t malfunction as a consequence of an unexpected operation. It

should continue to work, even if the result is not the intended or the most pleasant to the ear.

For these reasons, we argue that interaction with a computer and playing most musical instru-

ments are significantly different activities. The constant shift between these activities, imposed by

any DMI, is detrimental to the musical experience. This is probably why many musicians dismiss

the use of the computers in their work. Any mention of the computer immediately conveys an idea

of complexity and a barrier to music making. The notion of musical expression with an instrument

is tightly related to an embodied and playful activity, not dealing with the higher-level cognitive

load of a complex machine like the computer.

3.3 Immediacy

An acoustic instrument is always available to be played. An analog synthesizer isn’t much different;

the only additional step is powering the device. On the other hand, the DMI requires significant

preparation until it reaches a ready-to-play state. It involves establishing several connections,

booting the computer, launching at least one computer application and finally verifying that it all

3.4 Reliability 37

works as intended. This preparation phase depends on many factors, ranging from the complexity

and stability of the system to the proficiency of the user. In the best-case scenario, this setup

phase will inevitably take at least a couple of minutes, if not longer.

Most other instruments can just be “picked-and-played”, but with a DMI we can easily imagine

some of the following hypothetical scenarios:

• A friend asks you to demonstrate your fantastic new instrument. It doesn’t matter if you

still don’t know how to properly play it. The only request is for a simple demonstration in

these spare couple of minutes...

• You wake up in the middle of the night having finally been visited by the nocturnal muse. You

drowsily tumble through the corridors of the house, until you finally find your instrument.

Now to start it, so we can finally capture that... What was it?

• You are happily playing your DMI in this small gig, when there is a sudden power outage. In

a couple of minutes, everyone is up-and-ready and staring at you, waiting for the computer

to do its thing...

These simple anecdotes easily illustrate the problem. Most DMIs do not facilitate musical

impetus. A request to switch musical styles could be problematic. Sometimes the (apparently)

simple adjustment of a single parameter could involve considerable time and effort. These could

even represent optimistic scenarios, since they don’t consider sudden and unpredictable behaviors

from the computer. This lack of immediacy leads to situations where the DMI might seem more

of a barrier than a vehicle for artistic expression. Its workflow is not fluid and deterministic, like

with most other instruments.

3.4 Reliability

Computers are not very reliable machines. For musicians this is strongly discouraging, particu-

larly to those who play live music, where a critical failure during a stage performance can have

38 Limitations of DMIs

catastrophic consequences. This problem has always plagued live computer music and anyone

working in the field will corroborate the unease that this uncertainty brings to stage performance.

For this reason, in big productions like arena concerts, computer systems are often duplicated for

redundancy and include methods for graceful recovery. This is rarely the case with DMIs. The

reliability of the computer is undermined by several different factors:

• Multiple Duties

Because computers are expensive devices, it is difficult for users to allocate a machine just to

music production. The computer that serves the DMI is often used for writing documents,

navigate the Internet, doing tax reports or even playing video games. This pattern of use

often compromises the stability of the system, due to the overload of persistent processes

and third-party libraries of multiple software. Operating systems should be resilient to these

problems but unfortunately they are not. A freshly installed operating system will almost

always display better performance than another that has been in use for some time and for

multiple purposes.

• Poor Software

Some software can be poorly implemented, which results in reduced performance, unexpected

behaviors or simply total failure (commonly called a crash). In the case of commercial

software, the user has little power over these issues. Sometimes it is possible to trace the

actions that trigger the problem and even circumvent them, but most of the times the user

will not be able to truly fix anything. If instead the user decides to write custom software,

there is an added responsibility of assuring its quality and stability. Even then, most software

development requires third-party libraries that the developer might not control. Good-

quality development tools should help the user in avoiding the pitfalls of programming, but

naturally there is only so much any intelligent integrated development environment (IDE),

good domain-specific language or optimized compiler can help with.

• Low-quality Devices

3.4 Reliability 39

Most DMIs run on consumer-grade computers, often built to be competitive in a market

inundated with choice. Some manufacturers cut production costs by producing machines

with lower-quality components or materials with relative short life spans. Poorly engineered

computers could exhibit problems like overheating, sensitivity to supply currents or the

failure of integrated-circuit controllers, all of which compromise the performance and stability

of a DMI.

• Interference

Computers might also be subjected to interference from surrounding electrical systems. A

good example is radio frequency communication, used in wireless technologies such as Blue-

tooth or Wi-Fi. The performance of radio frequency communication is greatly compromised

by the amount of local transceivers operating on the same spectrum. Another good ex-

ample is electrical ground loops and their interference with the electronic components and

mechanical parts of the computer, often resulting in poor audio quality or unwanted audible

artifacts.

• Malware and Bloatware

The computer can also malfunction as a result of malware. Commonly called viruses, mal-

ware is computer software designed by third-parties for malicious purposes, like accessing

private data or covertly using computing resources. Bloatware is software that is pre-installed

by manufacturers and can severely compromise the overall performance and security of a

computer.

Over the last few years some of these problems have become less severe, but they still reduce

the level of confidence on the computer. No live musician will feel comfortable dealing with such

a high-risk tool, and one that in the end might create more problems than the ones it solves.

40 Limitations of DMIs

3.5 Longevity

DMIs also tend to exhibit poor longevity. Any machine is bound to eventually fail overtime but

computers are particularly problematic. They are relatively delicate machines that nevertheless

must resist stresses like prolonged use or harsh environments. The accumulation of dirt or the

failure of a mechanical part, such as a fan of the cooling system, could be enough to render a

computer useless.

But even if hardware components could withstand physical degradation and show better re-

silience, the computer is still bound to quickly become obsolete, due to the accelerated pace of

its industry. Most computer software is written and compiled to work on specific versions of an

operating system (OS). When there are major revisions of an OS, which in today’s industry stan-

dards happens almost yearly, much of the software also needs revisions to work properly. These

short cycles of innovation leave smaller developers in a tight spot because sometimes they lack

the resources to keep up with such quick turnarounds. Great software is sometimes abandoned in

just a few of these iterations. Those developers that can keep up usually charge additional fees

for upgrades, which is also prejudicial for the consumer, who is forced to invest more money to be

able to continue to use the product.

Computer hardware faces similar problems. About every five years we see the introduction

of new processing architectures, physical connectors and data transport protocols. While they

provide better performance, bandwidth or connectivity, they also introduce incompatibilities with

previous-generation software and peripherals, which will then need to be ported, adapted or fully

substituted by their more modern counterparts. We hope that modern I/O standards like USB C

deliver in the promise of one type of connector for all digital devices and longer life cycles.

In this context of accelerated innovation and consumption, the commercial industry expects

the user to purchase new technology instead of maintaining old one. There is no motivation for

companies to offer continued support or to create products that exhibit significantly longer life

spans. Most modern computers have low serviceability and it is almost impossible to independently

3.6 Conclusions 41

source and substitute components. For all of these reasons, even an extremely reliable computer

will eventually become obsolete.

The reduced longevity of computers is a cause of concern not only for DMIs but to all media

art. Many of the early pieces from the pioneers of computer music are today totally irreproducible.

They cannot be played live or studied in detail. Fortunately, since the late 1990s, some museums,

galleries and artistic institutions have come to understand the importance of devising strategies

and concerted efforts for the conservation of digital media art (Digital Art Conservation 2018;

Variable Media Network 2018; DOCAM 2018; Rhizome 2018).

3.6 Conclusions

In this chapter we examined some of the problems, limitations and disadvantages of DMIs. While

there are certainly many more important aspects that could be pondered, we have concentrated

on the issues that stem directly from the reliance on computers.

In a traditional DMI architecture, the controller is used for the main activity of playing the

instrument, while the desktop or laptop computer is used as a peripheral device for data processing

and setup of the instrument. The fragmented nature of this architecture results in a lack of

embodiment of the musical object, which might be a considerable barrier to many potential users.

The operation of a DMI requires long and complicated setups. It also imposes a significantly

high level of interaction with the computer and the use of its interfaces and mental models. In the

daily operation of a DMI, these are secondary activities and many times completely unrelated to

music. Computers are also fragile and unreliable, a deficiency that compromises their use in live

performance and that severely impacts the longevity of an instrument.

Many people think of playing music as an activity that suggests playfulness and enjoyment.

The computer does not suggest those feelings. It is a machine originally made for work and

almost imposed in today’s most mundane tasks. It is also a general-purpose tool, with several

usability problems when adapted to work as a musical instrument. It lacks important properties

like determinism, immediacy, reliability and longevity, all of which are crucial to successful musical

42 Limitations of DMIs

instruments.

There is a considerable effort in the research and development of new gestural controllers but

there seems to be less preoccupation about many other aspects that influence the usability of

DMIs, many of which stem directly from the dependency on the traditional computers. In the

next chapter we will introduce embedded DMIs, a new category of instruments that could help

overcome at least some of the limitations of the current generation.

43

Chapter 4

Embedded Digital Musical Instruments

In this chapter we begin by introducing the concept of embedded DMI. We then present a survey

of different supporting technologies that could be used to build such instruments and discuss their

advantages and disadvantages. Finally, we present the state of the art on embedded DMIs, with

examples of different instruments and development frameworks.

4.1 A Definition of Embedded DMI

An embedded system can be defined as an electronic component that operates as an internal

subsystem of a larger device and that is responsible for handling one or more functions of that same

device. Embedded systems are part of virtually any modern electronic device. Home appliances,

industrial machinery, modern cars, toys and many other objects have embedded circuitry.

Embedded computing can be classified as a subclass of embedded systems, where the principal

hardware component has a computer-like architecture. Like in other types of embedded systems,

the computer interacts with various hardware components, with the difference that it can run

arbitrary user programs. This broader definition allows for the inclusion of microcontrollers or

field-programmable gate arrays (FPGA), processors that don’t necessarily run an operating system

but that can be arbitrarily programmed to run complex algorithms.

In some embedded computing applications it can be difficult to say if the device is or not in

44 Embedded Digital Musical Instruments

itself a computer. The best example are smartphones. Are they phones with embedded computing

or just computers with a different form factor?

We’ve already presented a definition of a DMI. It is a musical instrument composed of a

controller and a computer, and that can be programmed to have different sonic and interactive

behaviors. An embedded DMI is a possible nomenclature for a DMI that uses embedded computing

and where the computer is incorporated inside the body of the controller. This subsystem is

responsible for carrying out the same exact tasks that were once performed by the desktop or

laptop computer. This merge between the controller and the computer makes the instrument

fully self-contained and free from the need of any other external peripherals. In other words, the

external desktop or laptop computer would disappear from the equation. We could then ask a

similar question: is this a musical instrument with computing capabilities or a computer designed

specifically for music?

User-level programming is one of the fundamental characteristics that distinguishes a DMI

from other electronic music instruments. Therefore it is relevant to differentiate instrument pro-

gramming from operations of configuration, since they can be easily confused. Some users refer

to programming synthesizers as any operation other than playing music. Programming a DMI

implies implementing a synthesis scheme, mapping control parameters and developing any other

interactive behavior of the instrument. With this definition of instrument programming it is easier

to distinguish between embedded DMIs and other standalone electronic music instruments.

As discussed in section 2.3, DMIs are capable of complex audio synthesis and interactive

behaviors that many standalone synthesizers cannot reproduce and an embedded DMI should

continue to offer those same distinctive features and possibilities.

4.2 Base Technologies

There are many different technologies that can be used in the construction of embedded DMIs,

including microcontrollers, digital signal processors, field-programmable gate arrays or systems-

on-chip (SoC). We will start by describing these base technologies and then highlight their benefits,

4.2 Base Technologies 45

limitations and applicability to embedded DMIs.

4.2.1 Microcontroller

Microcontrollers are integrated circuits with fairly small processors and memories. They are

usually found in applications that don’t require vast amounts of processing power, like home

appliances or simpler industrial control. They have many different applications because they can

run different programs, stored on their volatile onboard memory and automatically loaded at

start-up.

Microcontrollers interact with other electronic components via their addressable input and

output pins. Some operate only in the digital domain but most can manage mixed-signals, handling

both digital and analog signals. They usually include convenience inputs and outputs for audio,

pulse-width modulation (PWM) and serial communication over digital buses (such as SPI or I2C).

More powerful microcontrollers also have dedicated floating-point engines and more advanced

connectivity through standards like USB.

One popular family of microcontroller processors is Atmel’s AVR (Microchip Technology

2018c), acquired by Microchip in 2016. They are the heart of the Arduino platform (Arduino

2014), which became very popular with the academic and hobby communities for its ease-of-use

and support. An 8-bit AVR typically operates at a speed of 8 to 16MHz and uses a flash mem-

ory with sizes from 16 to 256 KB. It exposes several pins for digital and analog I/O, a subset of

which generate PWM signals. PWM pins can be used for generating low-quality audio signals

(8-bit/16 kHz) by applying a low-pass filter to the PWM signal and correcting the direct-current

(DC) offset. Higher-quality depends on the addition of a dedicated DAC that receives serial or

parallel digital audio data directly from the microcontroller.

Microchip recently introduced more powerful microcontrollers with 16- or 32-bit buses and

central processing units (CPU) with higher clock rates, like the PIC32 or the AVR32 (Microchip

Technology 2018b). Some of these newer microcontrollers, like the dsPIC (Microchip Technology

2018a), can do DSP directly on-chip.

46 Embedded Digital Musical Instruments

There are some examples of electronic music instruments that use AVR microcontrollers, such

as the Nebulophone by Bleep Labs (Bleep Labs 2018), the Shruthi by Mutable Instruments (Mu-

table Instruments 2018) or the Anode by MeeBlip (Anode 2018), a fully open-source synthesizer.

4.2.2 Digital Signal Processor

DSPs are microprocessors that are more efficient in the mathematical operations commonly used in

signal processing. They have hardware architectures that promote parallel computing in one single

clock, where one instruction can be applied to a data vector: a Single Instruction Multiple Data

(SIMD) architecture, according to Flynn’s taxonomy (Flynn 1972). With direct memory access

(DMA), the processor can access memory blocks without the need to suspend the main program

instructions. Circular buffers are also characteristic of DSPs. They save computing cycles by using

a single pointer that loops through adjacent memory blocks, thus minimizing the computation to

address samples. These techniques can drastically increase performance in applications such as

finite-impulse response filters, where multiple coefficients are processed in parallel in a single

clock cycle. DSPs are also optimized to perform specific mathematical operations, like multiply-

accumulate (MAC), which are the basis for many algorithms in computer music, such as the

fast-Fourier transform, heavily used in the conversion of audio data between the time and spectral

domains.

DSPs are extensively used in applications such as data compression/decompression, multimedia

processing and data analysis. In musical applications, many of today’s digital effects racks or

guitar pedals use DSPs, although in those applications their functionality is usually predefined

and limited to parameter editing.

Early examples of custom DSP audio systems include the work by Barrière et al. (Barrière

et al. 1989) with the Motorola DSP56001 chip. Later Putnam describes Frankenstein (Putnam

et al. 1996), a system with an arrangement of eight simultaneous Motorola DSP56002 chips, also

proposing methodologies for DSP data sharing and interconnection between the processors.

Like microcontrollers, DSP chips include memory and can be freely programmed. Some of

4.2 Base Technologies 47

this programming can be done in C, but it is more common to use the assembly language for

DSP-specific functions. This lower-level operation makes DSPs more complex to program than

computers or microcontrollers. For this reason, DSP programming is usually done using specialized

IDEs.

Systems like Sonic Core’s SCOPE (Sonic Core 2018) or Symbolic Sound’s Kyma (Symbolic

Sound 2018) offer turnkey DSP solutions for musicians. Their external processing units or DSP

cards work in tandem with a host computer that runs simple software to configure the systems.

On SCOPE, the user can load virtual synthesizers, including a simulator of a modular analog

synthesizer with virtual patching, while Kyma uses a dataflow language similar to Max.

An example of a self-contained instrument built using DSPs is the TouchBox (Bottoni et al.

2007), a touch screen device developed at the Computer Science Department of the Sapienza

University of Rome. It uses the Atmel DIOPSIS740, a dual core chip that incorporates both an

ARM7 and a mAgic VLIW DSP. The ARM7 core controls execution, GUIs and I/O, while the

DSP performs the complex vector operations in a single cycle. To program and upload the new

sound synthesis, mappings or GUIs, the TouchBox must be connected to a computer running its

host software.

More recently, the use of standalone DSPs in musical applications has decreased substantially.

The enormous advance of general-purposed microprocessors reached a point where they can out-

perform DSPs by shear brute force, making it difficult to justify their cost and complexity. The

new trend in DSP chip technology is to use them as processing accelerators that work in tandem

with other types of microprocessors.

4.2.3 Field-Programmable Gate Array

In the last decade FPGAs have grown substantially and are currently starting to provide compet-

itive advantages in mass-market deployment.

FPGAs are integrated circuits composed of logic blocks that can be reconfigured after deploy-

ment (hence the name), as opposed to application-specific integrated circuits (ASIC) that once

48 Embedded Digital Musical Instruments

manufactured cannot be modified to update their functionality. Since FPGAs can completely

rearrange their gate array logic, they represent one of the most flexible solutions for embedded

computing. They are also one of the most efficient, since they virtually mimic an integrated circuit.

FPGAs use programs loaded from adjacent nonvolatile memory, setting up the fabric for a

specific application. Predesigned modules, called intellectual property (IP) cores, can be loaded to

emulate common circuitry functionality and can even implement complete soft microprocessors,

occupying only a section of the fabric, while keeping the remainder free for other purposes. Input

and output pins are freely addressable and many models are capable of mixed-signal operations,

handling both analog and digital signals.

FPGAs are very useful in parallel computing because they are capable of true concurrent

processing, as opposed to microprocessors with serial processing. They also have a true real-time

behavior, with latency kept within a few clock cycles, while a single data bit is passed between

subsequent digital signal processes. FPGAs can also generate different clocks, which allows for a

more precise management of processing tasks that happen at different rates.

Another advantage of FPGAs is their scalability and portability. A core can be reused in series

or parallel, or easily coupled with others to form more complex signal processing chains. Existing

programs are easy to adapt for bigger fabric sizes and different brands. The scalability of FPGAs

also adds extreme flexibility. For example, increasing the number of voices in a synthesizer might

be as simple as moving to a bigger fabric and cloning the same process as many times as necessary.

The main drawback of FPGAs is their intricacy and complexity because they are programmed

using low-level hardware description languages (HDL) such as Verilog or very high speed inte-

grated circuit hardware description language (VHDL). There are several efforts to create code

translators from other text-based languages (C and Python) and also common scientific comput-

ing environments (MATLAB, LabVIEW), but they usually fail to provide the efficiency of native

HDL implementations. Additionally, most of the times FPGAs must still exchange data with

other components and devices, so it becomes necessary to deal with the lack of interoperability

layers that are usually native to other platforms like microcontrollers or computers. This lack of

4.2 Base Technologies 49

interoperability could easily boost the complexity of implementations on FPGAs.

To address this problem there is an increasing number of hybrid systems that couple discrete

microprocessors with FGPAs. The microprocessor facilitates operations like system communica-

tion with other components and shares digital data with the FPGA fabric via memory blocks made

available to both chips. These hybrid systems provide much more flexibility and a wider range of

deployment scenarios by using FPGAs as parallel processing devices that boost efficiency on par-

ticular processes. An example is the Terasic’s Cyclone family of boards (Technologies 2018), which

couple the FPGA fabric with ARM processors to provide audio, video and networking capabilities.

In the past, FPGA development boards were relatively expensive items, but today there are

several companies making them more accessible. These include Digilent (Digilent Inc. 2018) and

Terasic (Terasic 2018), which have a number of new low-cost products in the form of compact

boards, accessible to smaller-scale developers, hobbyists and educators. There are also inexpensive

FPGA add-on boards that can be used together with single-board computers (see section 4.2.4),

such as the LOGI family of boards by ValentF(x) (ValentF(x) 2014).

There have been several efforts to use FPGAs in synthesizers. Synthup (Raczinski, Marino,

et al. 1999; Raczinski, Sladek, et al. 1999) is a peripheral component interconnect (PCI) board

developed by Raczinski and team, who report the ability to simultaneously run 800 oscillators with

interpolation. Saito also describes the implementation of MAC units for audio synthesis on FPGA,

showing it can outperform DSPs (Saito et al. 2001). In this application a host computer runs Pure

Data, which works in tandem with the FPGA. While the more intensive DSP calculation (filter,

oscillators or amplifiers) is done by the FPGA, the Pure Data patch conveniently takes care of

signal routing and timing.

FPGAs have also been extensively used in physical modeling based on finite-difference schemes.

Motuk (Motuk, Woods, and Bilbao 2005; Motuk, Woods, Bilbao, and McAllister 2007) proposed

plate and membrane models and Gibbons created a model for 1D wave propagation (Gibbons

et al. 2005). Pfeifle and Bader also conducted extensive research, modeling the banjo and the

violin (Pfeifle et al. 2009; Pfeifle et al. 2011) and proposing new methodologies for real-time

50 Embedded Digital Musical Instruments

control of physical modeling parameters (Pfeifle et al. 2013). Other musical applications with

FPGAs include wave-field synthesis (Theodoropoulos et al. 2009) or high-frequency sensor signal

acquisition for the construction of more responsive physical controllers (Avizienis et al. 2000;

Kartadinata 2006).

4.2.4 System-on-Chip

The conventional desktop personal computer (PC) is composed of several integrated circuits, such

as the CPU, random-access memory (RAM) or graphics processing unit (GPU), which interoperate

through communication buses on a large PCB, commonly called motherboard. SoCs integrate all

of those components into a single chip. They work very similarly to a computer, by running an

operating system that controls several concurrent processes that share resources like the CPU or

memory. Today, many SoCs use the Linux operating system, which allows them to run much

of the software that might have been originally written for the x86 architectures of desktop and

laptop computers, without the need for a significant refactoring.

The rapid advance of the mobile industry has been an important factor for the improvement

of SoCs, since compactness and low-power operation are crucial in products like smartphones

and tablets. There are several types of SoCs on the market but the most popular architecture is

ARM. Contrarily to Intel, AMD or NVidia, ARM does not produce or distribute chips but instead

licenses intellectual property to about 300 companies (Texas Instruments, Apple, Qualcomm, ...),

who are then responsible for manufacturing their own chips. This decentralized business approach

circumvents lock down by chip manufacturers, which led many companies to consider the ARM

architecture a sound investment. It is expected that ARM architectures will continue to grow in

the upcoming years, even threatening the x86 architecture in the desktop and laptop markets.

There are several families of ARM processors, from the more modest Cortex-M series with

about 0.84 DMIPS/MHz to the Cortex-A with up to 3.5 DMIPS/MHz. Mid-tier processors, such

as the Cortex-A8 have 2.0 DMIPS/MHz, with clock speeds between 300 and 1000 MHz. ARM

processors are also common in hybrid architectures that integrate DSPs or FPGAs.

4.2 Base Technologies 51

Single-board computers that incorporate SoCs are commonly used in embedded applications.

The terminology originates from the fact that these computers are composed of a single PCB,

where all the components are pre-soldered, in contrast to regular motherboard-based computers,

where components are modular and connected to communication buses via interfaces like PCI.

In the case of SBCs that use SoCs, we normally find additional components to expand con-

nectivity, such as Ethernet controllers, memory expansions or serial buses. In most SBCs, the

SoC’s chip pins are also exposed via general purpose input/output (GPIO) interfaces. The result

is extremely small-sized and low-powered computers, with relatively high processing power and a

myriad of I/O options. In essence they are a sort of hybrid between microcontrollers and regular

computers.

The Raspberry Pi (Raspberry Pi Foundation 2018) and the BeagleBone (BeagleBoard 2018) are

two examples of ARM-based SBCs that became very popular in education and hobby communities

in the same fashion as the Arduino.

There are reports of several implementations of DMIs with SBCs. The El-Lamellophone (Trail

et al. 2014) is a hyperinstrument that uses piezo-electric pickups mounted on the underside of the

instrument’s body for direct audio acquisition and processing using Pure Data. RANGE (Mac-

Connell et al. 2013) is an autonomous processing unit for guitar effects, with pitch tracking and

several potentiometers to control audio synthesis/processing parameters. The authors refer to the

high level of autonomy of their systems and the versatility that DSLs like Pure Data provide, with

a “wide range of possibilities and for both digital audio effects and their control” (MacConnell

et al. 2013).

4.2.5 Analysis

Processing Power

When selecting a technological platform to support the development of an embedded DMI, the

first preoccupation will inevitably fall on processing power and the ability to perform relatively

complex audio synthesis with sufficient sound quality and acceptable latency. In terms of pure

52 Embedded Digital Musical Instruments

processing power in DSP applications, FPGAs will stand out due to their capacity for parallel

processing and low-level control over DSP processes.

Microcontrollers can also achieve low latency but have much less processing power than FPGAs,

so their applicability in scenarios of more demanding audio synthesis is somewhat limited.

Single-board computers with ARM processors use a more traditional form of serial processing.

They are capable of running complex audio synthesis but at the cost of increased latency. There

are several efforts to categorize the performance of these systems in real-time audio processing.

MacConnell (MacConnell et al. 2013) measured latency values that ranged from 10–15 ms. Topliss

performed more rigorous tests that consisted in “measuring the time delay between the sound

produced by pressing a button on the keyboard and a sinusoidal audio output triggered on the

computer by pressing the button itself” (Topliss et al. 2014), for several different setups of buffer

and period sizes at 16-bit and a sampling rate of 44.1 kHz. The results show latencies that span

from 2.5–12 ms in the various setups, with no more than 1ms jitter, which is well within the

generally accepted latency magnitudes for real-time performance (Wessel et al. 2002).

One of the most common methods to evaluate synthesis performance of a system is to count

the maximum number of simultaneous oscillators it permits. Although this constitutes a valid

measurement it is not very informative, considering that computer musicians use many different

types of synthesis techniques. We proposed a new methodology consisting of a categorization of

synthesis techniques and the evaluation of the maximum number of simultaneous voices possible

with each one (Franco and Wanderley 2015). The test was performed on the BeagleBone Black

SBC, with a 1 GHz ARM R Cortex-A8 processor and running SuperCollider. The BeagleBone

Black was able to reproduce 184 voices of wavetable synthesis, 26 of granular synthesis, 12–20

voices of two types of cross-synthesis and 16 voices of a pitch shifter based on the phase-vocoder.

With these results, we became confident that an SBC has enough computing power for the DSP

of many DMIs.

4.2 Base Technologies 53

Integration and Standards

Many DMIs have to communicate with other peripherals or integrate third-party components

and software. This type of interoperability is possibly easier to implement in microcontrollers

and SBCs, which have built-in hardware interfaces and controllers. SBCs also have the increased

advantage of the middleware and software stacks of the operating system, which considerably

facilitates addressing devices from user programs.

There are also strong advantages in the adoption of software and communication standards

in component integration. These include communication protocols (MIDI, OSC), plug-in formats

(virtual studio technology, Audio Unit, LADSPA), IC communication buses protocols (I2C, SPI),

programming languages (PD, Max, SuperCollider) and many others. All of these standards are

generally more difficult to implement in DSPs or FPGAs.

Although FPGAs can fully emulate soft processors, they still rely extensively on third-party

proprietary solutions. Many IP cores have restrictive licenses that impede their modification and

distribution.

Complexity

Programming an advanced DMI on an FPGA is significantly more complex than with SBCs or

microcontrollers. The trade-off between the complexity and performance of FPGAs might prove

unbalanced for musicians, who could be tech savvy enough to engage in some level of programming

but will unlikely choose to develop signal processing algorithms from the ground up. While IP

cores might somewhat mitigate this problem, they cannot fully overcome the need for significant

knowledge in FPGA architectures. On the other hand, SBCs and even microcontrollers have

complete computer music DSLs that are more in tune with the needs of musicians and that offer

a quicker path to creativity and productivity with DMIs.

54 Embedded Digital Musical Instruments

Scalability and Portability

FPGAs are extremely scalable and portable because their programs can be easily adapted to

different fabrics without the need for significant refactoring. Solutions based on microcontrollers

or SBCs might be harder to port to new systems because they depend more heavily on specific

hardware implementations. Nevertheless, such problems can be alleviated by good programming

practices and the adoption of well-supported libraries and middleware.

Interactivity

A DMI can provide a lower or a higher level of interactive behavior, from simple audio processors

to instruments using artificial intelligence to play together with the performer. The possibility of

complex interactive behavior is one of the main differences between DMIs and other standalone

synthesizers or sound processing units. In this sense, SBCs are easier to program, can resort to

many third-party libraries and are connected in networks. They are more appropriate for complex

interactive behavior, while FPGAs or microcontrollers might be more limited for such approaches.

FPGAs are complex to program and have less third-party libraries, while microcontrollers are

more limited in processing power.

Availability and Cost

Two other important considerations in the choice of a base technology for embedded DMIs are

availability and cost. Powerful FPGAs are still relatively expensive, while ARM SBCs and mi-

crocontrollers typically cost less than USD 50 and are available in many electronics stores. The

previously mentioned Cyclone and LOGI boards (see section 4.2.3) constitute notable exceptions

and prove that there is definitely a growing interest in the use of FPGAs. Nevertheless, they still

represent a market at its infancy, and for now SBCs and microcontrollers are still a more sound

choice for makers and educators.

4.2 Base Technologies 55

Growth and Communities

The mobile and embedded computing industries are bound to continue to stimulate a substan-

tial growth of ARM architectures. New ARM-based SBCs and microcontrollers are constantly

introduced in the market and many of them made available to the general public. The Arduino

platform was introduced in the mid-2000s and was largely responsible for the dissemination of

microcontrollers for hobbyists. Its major influence in electronics education and knowledge sharing

is undeniable. SBCs like the Raspberry Pi or the BeagleBone also found their way to the hands

of the Maker community and are now going through the same exact growth process.

It is therefore safe to say that ARM processors have the potential to dominate the embedded

computing market and are possibly a good bet for a technology that will continue to offer better

specifications and continued support in the upcoming years. Embedded DMIs could benefit from

adopting these industry trends.

Conclusions

Microcontrollers are cheap and simple to use but have less processing power. They are optimal

for the construction of simpler low-fidelity instruments.

FPGAs have optimal architectures for high performance and low-latency digital signal pro-

cessing, but are complex to program, expensive and often use proprietary technologies. They

are also less widely available and less used by the Maker community, although we are seeing

the introduction of more affordable and user-friendly products. FPGAs might be optimal for

the construction of high-performance DMIs but less appropriate for the development of advanced

interactive behaviors or frequent user-level programming.

SBCs are widely available, cheap and represent a fast growing market. They offer extreme

flexibility because they can run different programs and use proven and mature Linux libraries.

SBCs also have architectures that are much closer to traditional computers and thus are possibly

better to create a programmable DMI that offers the same advanced features and interactivity

56 Embedded Digital Musical Instruments

that characterizes previous-generation DMIs.

4.3 State of the Art

In this survey we present past and present examples that constitute the state of the art on em-

bedded DMIs. The objective is to provide an overview of how DMI developers have explored

the possibilities of embedded computing. There is a large number of synthesizers that use these

technologies, but we are most interested in highlighting those that maintain the most important

characteristics of computer-based DMIs. Programming (or at least a high freedom of configura-

tion) is probably the most important of those characteristics, so our selection criteria concentrates

in cases where programming is featured by design and a clear part of the specification.

Some examples date back to almost two decades and range from commercial products to

academic research. This level of heterogeneity becomes more manageable by aggregating our

cases into three main categories:

• Early examples: some of the first concepts and technologies on embedded DMIs.

• Products: commercial products available directly off-the-shelf.

• Frameworks: hardware and software development tools for instrument makers.

It is important to note that we did not have direct access to many of these systems. The

information hereby presented is mostly collected from specification sheets, manuals, marketing

materials, academic publications and online educational videos. Therefore, it is difficult to guar-

antee a consistent categorization of the source data, although we believe this information holds

enough value to inform our analysis.

At the time of writing, Prynth has been available to the public for two years. It could now be

considered part of the state of the art, but we abstained from including it in this survey since it

will be described and discussed in subsequent chapters.

4.3 State of the Art 57

4.3.1 Early Examples

Soundlab

The SoundLab (Curtin 1994) was developed in 1994 by Steven Curtin, during a research residency

at STEIM. It was an incremental development of a previous device, the SensorLab, a portable

signal acquisition system for wearable haptic interfaces.

The SoundLab had sensor signal acquisition but also onboard real-time audio synthesis with

the addition of a DSP. The system was composed of the Siemens 80C535 microcontroller, for up

to 8 channels of analog-to-digital conversion, communicating with a Motorola 56004 DSP chip, to

compute and output audio via an inter-ic sound (I2S) serial bus. This family of Motorola DSP

chips was equipped with a debugging port called on-chip circuit emulation (OnCE), that could

communicate with a host computer to upload, download and debug DSP programs written in

OnCE-Forth.

The SoundLab also included a library with several audio processing algorithms, implementing

functions such as multimode oscillators, delays, waveshaping and pitch shifting. Unlike most

systems at the time, the SoundLab was a completely self-contained unit that could be easily

reprogrammed.

Gluiph

The Gluiph (Kartadinata 2003) was a system designed by Sukandar Kartadinata in 2003 and

directly inspired by the SoundLab. It was probably one of the first DMI development systems to

run on a single-board computer.

The base system was originally developed by Mtronix for multimedia set-top boxes and had a

Philips Trimedia CPU, synchronous dynamic random-access memory (SDRAM) and Flash mem-

ory, a complex programmable logic device (CPLD) and onboard audio with 2 inputs and 10

outputs. An added microcontroller subsystem was responsible for analog sensor acquisition and

digital sensors handled directly through the CPLD. For audio synthesis and mapping, the system

58 Embedded Digital Musical Instruments

used a modified version of PD, adapted to interface with the sensor subsystem, audio drivers and

file system of the Mtronix SBC. There is no specific reference to the programming workflow or to

its level of dependency on a host computer.

Gluiph became the technological foundation for at least two instruments: Skrub, a keyboard

sampler with additional trackpads for sample manipulation, and Rajesh Mehta’s meta trumpet, a

hybrid between a trumpet and a trombone that includes a gyroscope sensor, preset buttons and a

display screen.

Fungible Interfaces

In 2010, Hollinger, Thibodeau and Wanderley presented an embedded hardware platform used

in the construction of their Fungible Interfaces (Hollinger et al. 2010). The system ran on a

programmable system-on-chip (PSoC) by Cypress Semiconductor. The PSoC is a peculiar ar-

chitecture, composed of a CPU (an ARM7 processor) and a mixed-signal array, similar to the

programmable logic device (PLD) used in Gluiph. The PSoC signal array is programmed using

digital and analog blocks that can be freely routed between themselves or to a GPIO interface.

In Fungible Interfaces, the system uses an I2C bus for communication to peripheral components

and USB to connect to a host PC. The onboard 10-bit converters are used for both high-speed

analog sensor acquisition and audio output with 1 μs settling time. The ARM processor is respon-

sible for mapping and synthesis, with examples of two physical modeling implementations, the

FitzHugh-Nagumo excitable cell and the Ishizaka-Flanagan vocal fold, both of which were used in

Thibodeau’s augmented trumpet.

The authors of this platform refer to the modularity of the PSoC and how the use of high-level

DSP nodes could greatly accelerate DMI prototyping.

4.3 State of the Art 59

4.3.2 Products

Nord Modular

The Nord Modular (Nord Keyboards 2018) was a synthesizer produced by Clavia and introduced

to the market in 1997, with a second version (the G2) produced from 2004 to 2009. It had

different formats (keyboard, rack module and tabletop) and digitally emulated an analog modular

synthesizer.

Its strongest feature was that it was specifically designed so that the user could reconfigure

the DSP engine. This was done by connecting the Nord Modular to a host computer and creating

new patches using a GUI application resembling an analog modular synth, in which the user could

virtually add processing modules and interconnect them using cables. All the processing was

carried out by the Nord’s onboard DSP chips, allowing the instrument to be programmed and

later used in standalone mode.

The OWL

The OWL (The OWL 2018) is a programmable audio platform developed by Rebel Technology

and available since 2013 in two different formats: an audio effects pedal and an eurorack module.

The pedal version has a foot switch and 4 knobs, while the eurorack version has 8 knobs, 5 control

voltage inputs, and I/O triggers. The main processing unit is an STM32F4 microcontroller, with a

32-bit ARM Cortex M4 processor, 192 kB RAM, 1MB Flash, 8 Mb SDRAM and a USB connector.

Audio is handled by a Wolfson WM8731 stereo codec, with two inputs and two outputs at 24-bit

depth and sampling rates of up to 96 kHz.

The system is programmed by connecting the OWL to a computer and using an online com-

piler with a full C++ application program interface (API), apparently based on the JUCE frame-

work (ROLI Ltd. 2018). The online compiler can also be used as a source-to-source compiler (a

process also called “transpilation”), converting PD and Faust (Orlarey et al. 2009) programs to

C/C++, and optionally create an interactive JavaScript preview for testing a DSP program. A

60 Embedded Digital Musical Instruments

recently announced feature is that the OWL can now use Max patches with the gen∼ object, since

they can be easily exported to C++ code.

The OWL developers encourage the user community to share their programs, so there is a

contribution of about 180 freely accessible patches available online. The hardware schematics and

software for The OWL are open-source and released under a GNU general public license (GPL).

MOD Duo

The MOD Duo (MOD Devices GmbH 2018) is a commercial audio effects unit, created by MOD

Devices in 2016. It has the typical format of a pedal board, with 2 audio inputs and outputs,

headphone output, 2 liquid crystal displays (LCD), 2 foot switches, 2 knobs, MIDI input and

output, 2 USB and an Ethernet connector. Although the company does not provide any particular

details about the processing unit, there are several references to a single-board computer with

added custom electronics. All audio effects of the MOD Duo are based on the Linux audio

developer’s simple plug-in API version 2 (LV2) plug-in format.

The MOD duo is not exactly programmable but it is highly configurable. It mimics the work-

flow of a guitar pedal board, with complex audio processing chains created from an arrangement of

virtual pedals and sound processors. It is configured using a web application that presents a visual

canvas that the user can freely populate with instances of the virtual processors. The physical

knobs and switches of the device can then be freely mapped to any of the exposed parameters.

New modules are available on a virtual online store and the creators of the MOD Duo have also

opened the development to third-party developers, so they can create and sell their own plug-ins.

The company has also recently announced support for Max with gen∼, similarly to the OWL.

Trinity

Bastl’s Trinity (Bastl Instruments 2018) is a collection of palm-sized devices, available as kits

or preassembled units. They all have similar interfaces, with 3 knobs, 5 to 7 switches and a

volume control. At the heart of these small devices is an ATmega328, the same chip found on

4.3 State of the Art 61

the most common versions of the Arduino boards. The audio output is a TRS 3.5mm jack,

with a relatively low-fi audio signal (16 kHz, 14-bit). On the other hand, due to their low power

requirements, Trinity instruments can be powered by a 9 V battery. A remarkable feature is the

inclusion of a small side connector to daisy chain units to share power, audio and MIDI.

These little devices are intentionally made to be reprogrammed using the Arduino programming

language via the Mozzi library (examined in the frameworks section).

Patchblocks

Patchblocks (Patchblocks 2018) are miniature synthesizers with a similar functionality to Bastl’s

Trinity. The microcontroller used is an LPC1343, with an ARM Cortex M3 processor at 72 MHz.

They have two knobs, two buttons and stereo I/O, with a sampling rate of 20 kHz and bit depth

of 10 bits. They also have a data bus, transporting MIDI and digital audio for lossless processing,

and a battery autonomy of 10 hours. A micro-USB connector is used to charge and program

the modules. Patchblocks are programmed using their own dataflow language and dedicated host

computer application.

The company behind the Patchblocks has recently announced the discontinuation of these

products.

4.3.3 Frameworks

Mozzi

Mozzi (Barrass 2018) is an audio toolkit for Arduino microcontrollers, composed of several high-

level DSP building blocks. It includes an implementation of separate interrupt routines for audio

and control, solving one of the main difficulties of using microcontrollers in audio processing. The

audio sampling rate is of 16.384 kHz, while sensor acquisition and control signals operate at 64Hz.

The output buffer has a size of 256 samples, resulting in a maximum latency of 15ms. Mozzi

works with the AVR 8-bit microcontrollers, found on the more common Arduino boards, and also

some of their variants, like the Teensy, which uses an ARM microcontroller with an onboard 12-bit

62 Embedded Digital Musical Instruments

DAC. The Mozzi library is freely distributed under a ShareAlike Creative Commons license. The

supporting website contains examples, an API documentation and a dedicated user forum.

Axoloti

Axoloti (Taelman 2018) is a preassembled electronics board with an STM32F427 microcontroller

and assorted connections, like stereo I/O at 24-bit/48 kHz, headphone output, MIDI, USB and a

secure digital (SD) card slot. The circuit board also contains several soldering pads for custom

I/O, including 16 channels of analog to digital conversion, SPI and I2C interfaces.

The system is programmed by connecting the Axoloti to a host computer via USB and using

a custom editor similar to the Nord Modular. The editor is written in Java but generates C++

code, which is then compiled and uploaded to the board.

There is no specific mention to an intellectual property license, but both the circuit schematics

and software are freely available online.

Satellite CCRMA

Planet CCRMA is a Linux distribution for personal computers, maintained by the Center for

Computer Research in Music and Acoustics (CCRMA) of Stanford University. Planet CCRMA

contains system-level enhancements and precompiled applications, making Linux PC audio systems

more accessible to novice users. Satellite CCRMA (Berdahl et al. 2011) follows the same principles

but it has been adapted for single-board computers, like the BeagleBoard-xM and the Raspberry

Pi.

By adding an Arduino microcontroller and a USB audio card, Satellite CCRMA provides a

good starting point for embedded DMIs, but still requires relatively high proficiency with Linux

command line tools. Without any update in several years, it appears Satellite CCRMA is currently

not being maintained.

Edgar Berdahl, author of Satellite CCRMA, was one of the first researchers to identify impor-

tant properties of embedded DMIs, like quicker setups and higher reliability.

4.3 State of the Art 63

Bela

Bela (McPherson 2017) is a platform for the creation of DMIs, developed by the Augmented In-

struments Laboratory at the Queen Mary University of London. This system uses the BeagleBone

Black SBC, coupled with custom electronics that provide a stereo output, 8 channels of analog

signal I/O and 16 of digital I/O, with latencies as low as 100 μs. This highly efficient system is

possible due to the BBB’s programmable real-time units (PRU), two co-processors that can access

the SoC’s internal memory, and Xenomai, a real-time Linux system that implements a co-kernel

for high-priority scheduling. There is an audio expansion board to transform the audio output to

6 channels at 44.1 kHz or 10 channels at 22.05 kHz, and also a multiplexer board to expand the

8 analog inputs to 64 at a lower frequency of 2.75 kHz.

Bela is programmed using a browser-based IDE and can compile C/C++ programs directly

on the BeagleBone. It can also run PD patches and SuperCollider programs, albeit with some

restrictions. PD patches cannot be edited directly on the IDE and SuperCollider cannot be

programmed interactively (see section 5.7.3). Bela’s IDE also includes features like a console

window, a terminal prompt, file management, a virtual oscilloscope, code examples and an API

documentation. The hardware and software components are open-source and preassembled circuit

boards are sold by Augmented Instruments Ltd.

4.3.4 Analysis

Goals

The clearest difference between these various cases is that some are commercial instruments and

others frameworks for instrument development. They also require different levels of technical

knowledge. In a guitar effects pedal, the user will mostly control parameters, while operating

a synthesizer requires more knowledge in sound processing. The creation of a new DMI is an

even more demanding proposition, involving multiple disciplines (electronics, mechanics, computer

programming, interaction design) to fully conceptualize, develop and assemble a new instrument.

64 Embedded Digital Musical Instruments

These target groups also have very different sizes. There are certainly many more guitar players

willing to adopt a device like a configurable pedal than experimental electronic musicians willing to

develop idiosyncratic devices. Still we can find offerings for all levels of complexity and approaches

to music making.

Programming

All DMIs are meant to be programmed in some capacity. From our pool, both the Nord Modular

and the MOD Duo are instruments that are more configurable than programmable. They virtually

mimic the analog modular synthesizer and the pedal board, where audio processing modules are

chained and their parameters mapped to controllers. Maybe an instrument like the MOD Duo

cannot be truly called an embedded DMI, but the Nord Modular is somewhat programmable

because it can have state machines or perform nonlinear transformations.

Nord Modular, Patchblocks and Axoloti have their own dataflow languages, while the OWL,

MOD Duo or Bela can use transpiled Max or PD patches created on a desktop computer. Dataflow

languages are an easier entry point to programming, but not without their share of disadvantages

and limitations. Some types of programs can be difficult to construct and represent visually,

requiring excessive patching for operations that can be achieved succinctly with procedural object-

oriented languages. Other operations like control centralization, recursion or refactoring can also

prove challenging. As a unidirectional and automated process, transpilation of dataflow languages

to lower-level code can also become problematic. Implementation or performance issues are difficult

to trace and correct, and reverse transpilation is usually impossible, especially if the user edits the

generated code. Finally, a program that requires a transpilation post-process might be limited by

specific procedures or subsets of the original libraries.

Text-based languages generally offer better performance and the ability to create advanced

algorithms, with the disadvantage of a considerable increase in complexity. This is the case with

the OWL, Trinity or Bela, which are focused on C/C++ programming.

4.3 State of the Art 65

Programming Tools

Most of the referred systems are programmed on a local computer and the result uploaded to the

instrument via USB connection. The OWL’s compilation goes a step further, offering compilation

of programs via Internet services. The MOD Duo and Bela have a different approach. Their IDEs

also require a web browser, but all code editing and compilation operations happen directly on the

device, without the need for any special software or compilation toolchains on host computers.

Tangible Interfaces and Electronics Development

In this review, we refer to both instruments and frameworks to build them. Products like the

OWL, MOD Duo, Patchblocks or Trinity already have physical interfaces, with various buttons

and knobs, that can be freely assigned to synthesis or functional parameters.

Axoloti, Mozzi or Bela don’t have any predefined interface. The user must develop a custom

interface by connecting analog or digital sensors to the system. The Axoloti is possibly the easiest

to use because it does not require any development other than connecting the sensors. Bela focuses

on high-performance analog signal acquisition, through dedicated ADCs that communicate with

BeagleBone Black.

Audio Quality

Most DMIs have high-quality audio signals, accomplished via dedicated codec chips that run at a

minimum bit depth of 16 bits and a sampling rate of 44.1 kHz (equivalent to CD audio quality),

but that can go up to 24 bits and 96 kHz respectively. Trinity, Patchblocks or Mozzi are the

exceptions, with the lower audio quality of on-chip DACs or PWM. Most applications use stereo

inputs and outputs, but single-board computers can also be used for multichannel output.

66 Embedded Digital Musical Instruments

Latency

Latency is another important specification for DMIs. The time delay between actuation input

and sound reproduction can result from the accumulation of processing delays at many different

stages, like AD/DA conversion, communication protocols and DSP. Latency can be determinant

to the usability of a DMI, especially in applications where tight musical timing is required (eg.

percussive instruments).

Computers have higher audio latency than microcontrollers or dedicated signal processing

units, with values that can go up to 20 ms. Nevertheless, it is possible to tune single-board

computers for better real-time performance (Topliss et al. 2014), through optimization of system

kernels, binary compilation and vector buffering. When it comes to latency, Bela is a notable

exception because achieves sub-millisecond values with its PRU and Xenomai solution.

Musical Control Protocols

MIDI and OSC are the two most widely adopted musical protocols. MIDI connectivity is available

in most of our cases, either through the older 5-pin DIN connector or the more modern USB.

MIDI is a simple serial protocol, while OSC uses the user datagram protocol (UDP) messaging

over internet protocol (IP) networks, requiring a more complex networking middleware. SoC-based

instruments, like the MOD Duo or Bela, already have this networking subsystem, which might be

more difficult to implement in microcontrollers.

MIDI is still the most used musical protocol, a result of its legacy and commercial omnipresence,

but OSC is a much more flexible and modern protocol. OSC allows the user to define a custom

addressing system and transport any type of arbitrary data, while MIDI is bound by its strict

protocol and low resolution data. Furthermore, networking can also be used in other creative or

functional scenarios, from the multicast control of a large number of instruments to pushing and

pulling data from remote servers.

4.3 State of the Art 67

Sound Synthesis

Early analog synthesizers use subtractive synthesis, a method by which source oscillators with

basic waveforms are combined and processed by a series of filters. Digital systems spawned several

new synthesis techniques. Sampling and its derivatives, like wavetable or granular synthesis, are

only possible in the digital realm, due to the ability to hold and play arbitrary sound samples

stored in volatile memory. Physical modeling uses computation to simulate the mechanical and

acoustical properties of excitation sources, like strings or membranes, and the resonance of physical

bodies according to their materials and form. The phase vocoder makes extensive use of FFT by

decomposing sound and directly modifying its spectral content.

Instruments like the Nord Modular, Patchblocks or MOD Duo are emulators of source-filter

models and mostly limited to subtractive synthesis, while the Axoloti adds the ability to manip-

ulate sound samples. Devices such as the MOD Duo and The OWL are capable of performing

more complex digital synthesis because they can use dataflow languages like PD or Max/MSP.

Finally, formal languages like C++ or SuperCollider are more adequate for the development of

highly demanding algorithms or DSP chains.

A method that is often used to measure synthesis performance is to count the maximum amount

of sine wave oscillators that can run simultaneously, but the author suggests a more comprehensive

method (Franco and Wanderley 2015). It consists of selecting commonly used synthesis techniques

and counting the maximum number of simultaneous voices. Synthesis performance is an important

metric but the inability to access all the described systems prevents us from presenting concrete

performance results. Still, we can theoretically speculate that audio engines that rely on virtual

machines, such as SuperCollider or PD, are probably going to have lower performance than bi-

naries created from a lower-level C++ code, good programming practices and tuned compilers.

Nevertheless, the opposite situation can also occur, where a less experienced developer has diffi-

culties in properly managing the technical details of a lower-level implementation and negatively

impact performance.

68 Embedded Digital Musical Instruments

Mapping

Mapping is the process by which gestural control signals are transformed and applied to specific

parameters of the synthesis engine. It is the bridge that establishes the connection between a

tangible interface and the types of interactions it permits. There is significant research in the field

of mapping and some of its basic concepts might help in the evaluation of our cases. The first

notion is that most control signals need some sort of conditioning operation, like scaling or noise

reduction. The second is that a control signal can be mapped to a single parameter (one-to-one

mapping) or to many parameters (one-to-many mapping). It is also possible to control a parameter

from the convolution of several signals (many-to-one mapping) (Hunt and Wanderley 2002).

We can extrapolate that advanced mapping depends directly on the ability to program the

system. The Nord Modular or MOD Duo are mostly restricted to direct assignment, while dataflow

programming allows further transformation of signals (table lookup, filtering or nonlinear transfer

functions). Advanced mapping techniques, like machine learning, might be better to implement

in procedural languages like SuperCollider or C++.

Availability and Support

Last but not least, we should evaluate availability and longevity. Most commercial products have

a limited shelf life, before they are substituted by better versions or simply discontinued due to

market saturation or poor sales. Such is the case of the Nord Modular, which many still consider

to be one of the most compelling and flexible synthesizers ever built. Unfortunately, it cannot be

purchased anymore.

On the other hand, open-source solutions have the potential for continued support by developer

communities, but even those face the risk of sudden unavailability of third-party components,

which could significantly impact projects like Bela that are highly dependent on the features of a

particular hardware.

4.4 Conclusions 69

4.4 Conclusions

In this chapter we introduced the concept of embedded DMIs. They use small processors that can

be incorporated inside the body of the controller and that have enough processing power for audio

synthesis.

We have also reviewed different technologies that could be used in the construction of an

embedded DMI, including microcontrollers, FPGAs, DSPs and SoCs. Each technology presents

its own advantages and disadvantages. FPGAs and DSPs are able to run demanding signal

processing tasks with the best possible performance but they are complex and less accessible to

musicians. Microcontrollers are much easier to use but they tend to have lower audio quality and

cannot run complex audio synthesis algorithms. The SoCs found in single-board computers have

several advantages. They have architectures that are much closer to traditional computers and

have enough processing power for many of the synthesis techniques that are essential to computer

music. They also have the advantage of being able to use mature software libraries and applications

for the Linux OS. SoCs are a growing market and very accessible to independent developers and

small-scale businesses. Therefore, we believe they represent the best balance of features for the

construction of embedded DMIs.

Embedded DMIs are not exactly new. There are several past and present examples of efforts

to develop and commercialize them. Based on the proximity to our own definition of an embedded

DMI, we have selected and analyzed some of those cases, including both products and development

frameworks. They all converge to the same goal of discarding the computer but they also have

different workflows, limitations and base technologies. But the most important conclusion we can

draw from this state-of-the-art is the validation that embedded DMIs constitute a relevant topic

of research and development.

70

71

Chapter 5

Prynth: a Framework for Embedded

DMIs

In this chapter we introduce Prynth, a hardware and software framework for the development of

embedded DMIs. We discuss the motivations for the creation of Prynth, present an overview of

its features and then offer a more detailed description of each of its technological components and

their implementation.

5.1 Motivation

One of the first goals of our research on embedded DMIs was to build a small set of prototypes

that would allow us to explore new designs and test the viability of single-board computers. As

our work advanced, we began to implement many of the features we would like to see on our ideal

embedded DMIs. In this process we gathered a significant set of tools, methods and designs that

were systematically used in our prototyping activities. As our technical implementations matured,

we came to realize that they could be polished and packed into a more comprehensive framework.

If properly tested and documented, it could be shared with others and serve a wider audience. On

September 20, 2016, we released the first public version of Prynth.

72 Prynth: a Framework for Embedded DMIs

Prynth immediately attracted the attention of specialized media that focuses on topics like

electronic music, synthesizers and the DIY culture. This quick diffusion resulted in an unexpected

and quick growth of a user community, which led us to believe in the value of continuing the

development and support of our framework.

Prynth is a set of software and hardware tools that are free and open source. Our target

audiences are artists, educators and academic researchers that wish to create custom electronic

musical instruments. Therefore, we believe in the importance of offering development frameworks

that account for the resources commonly accessible to these user groups. We insist in the use of

off-the-shelf components that can be easily sourced and assembled at home using basic tools and

procedures.

Like any other framework, Prynth’s features and supporting technologies impose particular

methodologies and workflows that may not fit every user profile. Still, many of its choices take

into consideration the author’s experience of almost 20 years of study and creation of DMIs.

We believe Prynth represents a good balance between ease of use, performance, flexibility and

usability. Since its inception and release to the public, Prynth has also incorporated numerous

features requested by its users and will hopefully grow to include many more.

Another important aspect of Prynth is modularity. It is based on several decoupled components

that operate independently and communicate using standard interfaces and protocols. This level

of modularity facilitates the modification and substitution of these components in the creation

of custom applications. It also means that porting Prynth to different single-board computers

should be a relatively easy task, considering the possibility of obsolescence or discontinuation of

third-party technologies (see section 3.5).

Finally we believe that Prynth offers a relevant number of features that advance the research

on embedded DMIs and their interaction models. We will now describe those features and their

implementation.

5.2 Requirements 73

5.2 Requirements

In our model for embedded DMIs we have taken into account more than just fitting a headless

DSP system inside the body of a gestural controller. An embedded DMI should be easy to use,

conveniently programmable and capable of the complex sound synthesis, mapping schemes and

other interactive behaviors only possible with computers. In essence, it should strive to maintain

the many features that differentiate DMIs from traditional hardware synthesizers.

With this mindset we elaborated the following set of requirements to guide Prynth’s develop-

ment:

1. Real-time audio processing—enough computing power to process relatively demanding syn-

thesis algorithms in real-time.

2. Sensor signal acquisition—easy connection of sensors for the construction of tangible inter-

faces.

3. Programmability—ability to program new synthesis, mapping and interactive behaviors of

the instrument.

4. Dimensions—small and lightweight, so it may fit the body of a handheld instrument.

5. Integrity—fully operational without any significant dependence on the physical connection

to external peripherals like displays, keyboards or mice.

6. Driver and software independent—configurable or programmable without installing specific

drivers or software on host computers.

7. Plug-and-play—once powered, the instrument should reach a ready-to-play state autonomously

and quickly.

8. Networking—capable of connecting to shared networks to control or exchange data with

other digital instruments, devices or remote services.

74 Prynth: a Framework for Embedded DMIs

9. Transparency—the implementation should be as open as possible and avoid the obfuscation

of any processes, computer code or hardware designs.

10. Modularity—a modular design, to facilitate the upgrade, substitution or modification of

components.

11. Maturity and Richness—built on top of technologies and standards that have shown some

degree of maturity through their longevity, features, stability and large user communities.

12. Accessibility—using only common components that can be sourced directly from electronic

shops, assuring there is no lockdown by small providers or obscure business models.

13. Ease of use—the framework should be relatively easy for users with a minimal expertise in

DMI development (programming, soldering).

5.3 General Overview

5.3.1 Hardware Overview

The main hardware elements that form Prynth’s base system are the Raspberry Pi 3 single-

board computer, a custom circuit board with an embedded Teensy microcontroller, a set of 10

multiplexing circuit boards and an audio codec.

The single-board computer is responsible for running and supervising all of the main com-

putation tasks, including audio synthesis, mapping and various other interactive functions. The

RPi lacks any type of analog-to-digital conversion, so it requires additional circuitry for sensor

input. In Prynth, this is done using an additional microcontroller, the Teensy 3.2. The connection

between the RPi, the Teensy and the sensors is done through our custom circuit board that routes

their respective inputs and outputs. The Teensy acquires sensor data and sends it to the RPi

through a serial connection using Prynth’s custom communication protocol.

The signal acquisition circuit board accepts the direct connection of 10 analog sensors but this

number can be expanded using up to 10 smaller add-on boards with 8-channel multiplexers that

5.3 General Overview 75

are driven by a bit clock generated by the Teensy. With the multiplexing add-on boards, up to 80

analog sensors can be directly connected to a Prynth system. The circuit board also accepts the

connection of up to 48 digital sensors that communicate via standard I2C and SPI buses. All the

physical connections are done using female jumper cables with the standard 2.54 mm pin spacing.

Because the multiplexing daughterboards are separate from the main board, they can be located

anywhere inside the body of the instrument.

Analog sound input and output is done through an external codec that connects to the single-

board computer through USB or I2S. The single-board computer can also communicate with other

devices on the same network, using standard protocols like transmission control protocol (TCP)

and UDP, on top of interfaces such as Ethernet or Wi-Fi.

������

�	
��
��������

�	����������
������ ���	��

��

������
���

���������	��������
��

�������������� ��������������

����	������ ����	�������

�	�	����������� �	�	���������� !

��"��# $%�
�&�

��������	���� �	�	�����	�����'��%�������(

�	��
��
#
��������	����

Fig. 5.1 Hardware architecture overview.

The base system, comprised of the Raspberry Pi, coupled with the main circuit board and a

USB DAC, measures approximately 12 x 6 x 3 cm. Each multiplexer board measures 5 x 2.5 x 1.2 cm

and connects to the main board with a jumper cable.

Figure 5.2 shows the inside of a Prynth instrument called “The Mitt” (described in section

6.2.1).

76 Prynth: a Framework for Embedded DMIs

Fig. 5.2 The Mitt with the Prynth hardware inside.

5.3.2 Software Overview

Prynth is tightly integrated with SuperCollider, one of the most modern and powerful computer

music languages. SuperCollider itself is divided into two main applications: the SuperCollider

server (scsynth), the audio engine responsible for running DSP, and the SuperCollider Interpreter

(sclang), which runs user programs and sends control messages to the server. The communication

between the two applications is done via internal OSC messaging.

The official SuperCollider release works on a personal computer and uses its own IDE program,

in which the user writes new programs and controls the states of the SuperCollider server and

language applications. Prynth substitutes this native IDE by a web front end application served

by the instrument itself and that runs on any standard web browser, allowing access from any

thin client (computer, tablet or smartphone) connected to the same network. The functionality

is similar to that of the original IDE, with an embedded text editor and various other controls to

manage system settings. The web application is only necessary for programming and configuring

the instrument. Once powered, the instrument can autonomously reach a ready-to-play state by

running a predetermined user program.

5.3 General Overview 77

Other relevant software components include the firmware that runs on the microcontroller and

a bridge application that runs on the Raspberry Pi. The microcontroller firmware is responsible for

acquisition and conditioning of sensor data. It then encapsulates the data into a custom protocol

and sends it to the bridge application via serial interface. The bridge application is a middleware

between the microcontroller and the RPi. It receives the sensor data from the microcontroller,

runs an algorithm that decodes and checks the integrity of the serial messages, and then repacks

and sends the data to SuperCollider via local OSC messages.

The Prynth server not only serves the front end web application but also supervises and controls

all other software components. It can dynamically inject new SuperCollider programs, receive

real-time log messages via a Unix standard I/O stream, change parameters on the microcontroller

via bridge application and interact directly with Linux via portable operating system interface

(POSIX) commands.

�����������		
��������

��	���

��������
��
�

�����
�
���	�������

�	�
�����

�
�������
�

������

���

��������
���	�
�������	

���
�������
��

�������
���

���

Fig. 5.3 Software architecture overview.

Prynth’s software is distributed as a Linux image file that can be downloaded from our web-

site (Franco 2018a) and loaded into the SBC’s memory card using a desktop computer. The

microcontroller firmware and PCB design files are included in this image, but also independently

available for download on the project’s website.

78 Prynth: a Framework for Embedded DMIs

5.4 Single-board Computer

In Prynth we have chosen to work with the Raspberry Pi, since it is unarguably the most popular

and better supported SBC in the market. It was specifically created for education and it is widely

available for a price of approximately USD35. There are several versions of the RPi in the market.

Prynth was developed to work on top of the Raspberry Pi 3 model B, although several users have

reported correct operation with the previous Raspberry Pi 2 model B, which has a very similar

architecture. At the time of writing, a revised Raspberry Pi 3 model B+ has just been released

to the market, but it features only minor incremental improvements and preliminary tests also

show no issues with this Raspberry Pi model. From here onward we will be referring only to the

Raspberry Pi 3 model B, used in the development and testing of Prynth.

The RPi is a single-board computer with 85.6 x 56.5 x 17mm. Its top surface area is approxi-

mately equivalent to that of a credit card. Like a regular computer, the RPi offers a wide variety

of input and output connections, including 4 USB 2.0 ports, Ethernet, high-definition multimedia

interface (HDMI), analog audio and video through a 3.5 mm tip-ring-ring-sleeve (TRRS) jack and

two mobile industry processor interfaces (MIPI) for cameras and screens.

A 2 x 20 pin header serves as the RPi’s GPIO interface with the SoC. These pins provide ad-

dressable digital input and output pins and standard communication buses, such as user datagram

protocol (UART), SPI, I2C and I2S. It is through the GPIO interface that the RPi connects to any

external electronic circuitry, sometimes in the form of stackable PCBs that are mounted directly

on the header. A full map of the GPIO pins can be found on the technical documentation available

at the official Raspberry Pi website (Raspberry Pi Foundation 2018).

The RPi is designed around the Broadcom BCM2837 SoC, which integrates an ARM Cortex-

A53 processor, a GPU, Wi-Fi and Bluetooth. The ARM Cortex-A53 processor has a 64-bit quad-

core CPU, based on the ARMv8-A architecture and is capable of clock speeds of up to 1.2 GHz. Roy

Longbottom is a UK engineer that has offered reputable and comprehensive computer synthetic

benchmarks since 1997 (Longbottom 2018). In his tests, the RPi’s Cortex-A53 running at a clock

5.4 Single-board Computer 79

speed of 1200 MHz scored 711.6 MWIPS on the Whetstone benchmark and 2469 VAX MIPS

on the Dhrystone 2 benchmark. For comparison, a modern Intel Core i7 x86 processor running

at a clock speed of 3900 MHz achieves 3959 MWIPS on Whetstone and 16356 VAX MIPS on

Dhrystone. In rough terms, a Raspberry Pi has about one sixth of the processing power of a

recent desktop/laptop computer.

The integrated GPU of the RPi is a Dual Core VideoCore IV multimedia co-processor, with

Open GL ES 2.0, hardware-accelerated OpenVG and 1080p30 H.264 high-profile decoding capa-

bilities. This GPU subsystem is clocked at 400MHz and its 3D core at 300 MHz, which results

in a throughput of 1 Gpixel/s, 1.5Gtexel/s or 24GFLOPS with texture filtering and DMA infras-

tructure.

The BCM2837 SoC also includes integrated radio frequency transceivers for wireless commu-

nication using 802.11n Wi-Fi and Bluetooth 4.1.

The two other integrated chips found on the RPi are the system’s RAM and a USB controller.

The RAM is a DRAM module with 1 Gb of LPDDR2 memory, manufactured by Elpida (recently

acquired by Micron). The USB controller is a LAN9514, manufactured by SMSC (recently acquired

by Microchip). It provides an integrated solution to a 4-port USB 2.0 hub and a 10/100 Ethernet

controller using a single 25 MHz crystal.

Like most single-board computers, the RPi lacks integrated nonvolatile memory storage, such

as hard disks or solid-state drives. Instead it makes use of a microSD card, manually inserted

into the onboard memory card slot, and containing all the necessary operating system and user

files. MicroSD cards have lower read/write performance than standard hard drives and are also

less durable but in the case of embedded SBCs they offer the advantage of easy substitution and

backup at low-cost. The highest performance is achievable by opting for microSD cards of speed

class 10, which offer a read/write speed of 10 MB/s but that can go up to 80 MB/s in higher-end

offerings. For comparison, a modern solid-state disk drive should have average read/write speeds

of about 500 MB/s.

The RPi is powered through a 5V microUSB DC power adapter but all of its remaining

80 Prynth: a Framework for Embedded DMIs

circuitry operates at 3.3 V. Although the processor only consumes up to 1.34 A in turbo mode, the

recommended supply current is of 2.4 A, in order to assure proper operation of the radio frequency

transceivers and any other external peripherals or add-on circuitry.

Table 5.1 summarizes the technical specifications of the Raspberry Pi.

Table 5.1 Raspberry Pi 3 Model B technical specifications.
CPU 1.2 GHz 64-bit quad-core ARM Cortex-A53.
Architecture ARMv8-A (64/32-bit).
SoC Broadcom BCM2837 SoC.
Clock speed 600 MHz base and 1.2 GHz in turbo mode.
RAM 1 GB of RAM.
Power connector microUSB.
Audio output 3.5 mm TRRS jack.
Video input CSI (MIPI Serial Camera)
GPU Broadcom VideoCore IV @ 250 MHz
Video output HDMI (rev 1.3 with up to 1080p resolution), composite video (3.5 mm

TRRS jack), DSI (MIPI Serial Display)
GPIO 2x20 female pin header, with UART, I2C bus, SPI bus with two chip

selects, I2S audio, +3.3V, +5 V and ground.
Network 10/100 Mbps Ethernet and 802.11n Wi-Fi.
USB 4 xUSB 2.0 port.
RF Bluetooth 4.1.
Size 85.60 x 56.5 x 17mm
Weight 45 g
Power Ratings from 300 mA (1.5 W) while idle to 1.34 A (6.7 W) in turbo mode.

5.5 Audio

The RPi has an onboard 3.5mm TRRS jack that transports analog video and audio. The audio

signal is generated directly via the BCM2837’s PWM and passed through a low-pass filter. The

BCM2837’s phase-locked loop (PLL) is capable of frequencies up to 100 MHz, so theoretically it

should be able to work at audio sampling rates as high as 48 kHz. Unfortunately, the corresponding

bit resolution is limited to 11 bits, which severely compromises audio quality due to its low signal-

to-noise ratio.

Given these limitations, most RPi-based audio applications resort to the use of external audio

5.5 Audio 81

cards with discrete DAC codecs, usually relying on sigma-delta modulation and subsequent con-

version to a more conventional pulse-code modulation (PCM) signal. These types of audio cards

are capable of higher sample rates (44.1, 48, 96, 192 kHz) and bit-depths (16, 24 bits), resulting

in much better audio quality than the RPi’s PWM output. There are two types of external audio

cards directly usable with the RPi: USB and I2S sound cards.

There is a considerable number of different USB sound cards in the market. The cheapest

USB 1.1 cards have prices as low as USD 15 but are usually limited to stereo output and mono

input at 48 kHz. More expensive USB 2.0 cards can cost hundreds of dollars, but they have

enough bandwidth for multiple input/output channels, higher sampling rates and high-quality

signal converters.

I2S audio cards connect directly to the RPi’s GPIO header and are typically available in the

form of stackable PCBs. They have onboard codecs that directly accept the digital audio signal

of the BCM2837, in the form of an I2S bitstream. I2S cards can work at very high sampling rates

(up to 192 kHz) and generally have better signal/noise ratios than their USB counterparts. They

also tend to have lower latency, less audio artifacts and better overall performance in real-time

audio processing. The price of these audio cards is highly dependent on the onboard codec of

choice, and can range from the USD 12 of a Fe-Pi (Fe Pi 2018) up to USD 100 for a DACBerry

PRO (OSA Electronics 2017).

The RPi’s I2S audio stream is mapped to 4 specific pins on the RPi’s GPIO:

• LR Clock - GPIO pin 19

• Data In - GPIO pin 20

• Data Out - GPIO pin 21

• Bit Clock - GPIO pin 18

The Prynth software works with any audio device available to the advanced Linux sound

architecture (ALSA) (ALSA Project 2018), the default OS audio layer in Linux (see section 5.7.2).

This includes any USB or I2S supported by the Linux kernel and/or produced specifically for the

82 Prynth: a Framework for Embedded DMIs

RPi. In Prynth, instead of imposing a particular audio solution, the user can pick the one that

best suits a specific application and budget.

Nevertheless, I2S devices are always preferable because the Raspberry Pi does not have the

best USB implementation. In our tests with three different USB 1.1 audio cards, we found that

there was a random degradation of audio quality over time. The RPi community traced the root

of this problem and attributed it to the loss of split transactions1, required to manage USB 1.1

full speed devices (12 Mbps) on the faster USB 2.0 data stream (480 Mbps). In audio applications,

packet loss and clock drift can lead to audio artifacts such as clicks, pops and background noise.

To circumvent this problem, the Raspberry Pi development team included a temporary fix to avoid

packet corruption, in the form of a boot flag (dwc_otg.speed) that limits the kernel to USB 1.1

speeds2. We have verified that this option indeed solves audio problems with USB 1.1 devices,

with the downside that USB 2.0 devices may show inconsistent behavior or simply not work at

all.

5.6 Sensor Signal Acquisition

Some ARM single-board computers like the Raspberry Pi do not have onboard ADCs, so it is

impossible to connect analog sensors directly to these boards. But even if SBCs did have ADCs,

real-time signal acquisition could still present significant challenges. Like regular computers, SBCs

are designed for concurrent processing, running several interleaved processes that are automatically

managed by the operating system. The CPU might be occupied by many other computing tasks

that, together with signal acquisition, compete for processing power. Since processing load is vari-

able, it is impossible to assure constant and high-rate signal acquisition, which can be problematic

for real-time musical applications in which timing is paramount.

For these reasons, although the RPi could be programmed to control and receive data from
1A high speed USB 2.0 host uses split transactions to exchange data with a low speed USB 1.1 device by breaking

the data of the slower device into smaller packets that are sent in intervals. With this mechanism, the bus can
continue to be used for high speed data in the interim without being blocked by the completion of the low speed
messages.

2A boot flag is a start-up parameter that is passed to the kernel when the computer starts.

5.6 Sensor Signal Acquisition 83

external ADC chips, we opted for the development of an independent signal acquisition subsystem

that works in tandem with the RPi, offloading it from any signal acquisition tasks. This subsystem

is composed of a main circuit board and up to 10 optional daughterboards that can be used to

increase the number of analog input channels on the system.

The design files for these PCBs are distributed with Prynth in the form of Gerber files (Ucamco

2018), the standard computer-aided design (CAD) format used by the PCB manufacturing in-

dustry. In the last 5 years, low-quantity PCB manufacturing became extremely affordable and

accessible to the Maker community. To manufacture custom PCBs, the customer logs to the man-

ufacturer’s site, uploads the PCB design files and pays via credit card, to have the PCBs delivered

to the door with typical turnaround times of 3 to 5 days plus shipping. The estimated price of

manufacturing Prynth’s boards is of about USD 20.

5.6.1 Control Board

The main circuit board of the acquisition system is called Control and incorporates a Teensy 3.2

microcontroller. The Teensy family of microcontrollers is developed by Paul Stoffregen (PJRC:

Electronic Projects 2018a). They quickly became a popular alternative to Arduino because they

share the same programming language but are equipped with ARM-Mx processors. They offer

much better performance at significantly lower prices, when compared to the Arduino’s older 8-bit

Atmel processors, still widely used by many DMI developers. The Teensy 3.2 has a Cortex-M4

processor with a clock speed of 72 MHz, but that can be overclocked to 96 MHz. It accepts a power

supply range from 3.6–6.0 V, which is then internally regulated to the operating voltage of 3.3 V.

It has 34 pins for digital I/O, 2 x 13-bit ADCs multiplexed over 21 pins and one analog output

DAC with 12-bit resolution. The Teensy 3.2 also includes several communication buses: 3 serials

UART with speeds of up to 115 kbaud, 2 x I2C, SPI, I2S and controller area network (CAN). A

full map of the Teensy’s pins can be found on the microcontroller’s official documentation (PJRC:

Electronic Projects 2018b).

With the Control board, the Teensy’s pins are remapped to a series of 2.54 mm pin headers,

84 Prynth: a Framework for Embedded DMIs

facilitating the connection of any external sensors and peripherals to the microcontroller’s digital

buses or ADC pins. The Control board has the same footprint as the RPi, so it can be stacked

directly on top of the GPIO to form a compact unit. The two boards exchange data bidirectionally

through serial communication over their respective UARTs, at a speed of 3 Mbps. Figure 5.4b

shows an overview of the Control board design and its connectors. A detailed description is

available in the appendix A.1.

(a) Control board mounted on the RPi. (b) CAD screenshot.

Fig. 5.4 Control board.

Soldering the Teensy microcontroller directly to the Control board is possibly one of the hardest

steps for electronics beginners. The problem lies in the fact that some of the Teensy’s pins are

located on the bottom side of the microcontroller, including the I2C bus pins used by Prynth.

Therefore, the microcontroller must be assembled by flowing solder through the pin holes of both

boards to create bridges. This is a difficult procedure, to which we still haven’t found a better

solution. On the other hand, if the user has no need for I2C communication with digital sensors,

we offer an easier assembly solution that uses male pin headers to stack the Teensy on top of the

Control board.

5.6 Sensor Signal Acquisition 85

5.6.2 Muxi Daughterboards

The number of ADC pins on a microcontroller is sometimes insufficient in applications that require

a large number of analog sensors. In those cases, a common practice is to use multiplexing. An

analog multiplexer chip contains several inputs that can be arbitrarily routed to a single output.

This operation is done by setting a specific combination of the multiplexer’s control pins to high

or low. By cycling through the input channels, it becomes possible to use a single ADC channel

to read multiple sensors.

In Prynth, we have created the Muxi daughterboards, that use a standard 4051 8-channel

analog multiplexer to expand the 10 original analog inputs of the Control board. With the Muxi

daughterboards, a Prynth system can use a total of 80 analog sensors. The Muxi daughterboards

are connected directly to the Control board via a 6-pin cable, transporting power, analog input and

ground, and also the digital signal to control the gates of the multiplexer. The multiplexer control

signal is sent over three wires labeled A, B and C, constituting a 3-bit counter that constantly

cycles at the specified rate.

(a) Muxi daughterboard after assembly. (b) CAD screenshot.

Fig. 5.5 Muxi daughterboard.

The sensor input connectors of the Muxi daughterboards have three pins: 3.3 V power, ground

and analog signal input. Each of the sensor inputs has a corresponding pull-down resistor, required

86 Prynth: a Framework for Embedded DMIs

in the use of variable resistors or switches. Figure 5.5b shows an overview of the Muxi board design

and its connectors.

The Muxi daughterboards also include the footprint for a capacitor, which could be used to

prevent possible current drops. This capacitor is included mostly as a preventive measure and its

use entirely optional.

5.6.3 Microcontroller Firmware

Just like Arduino, the Teensy microcontroller is very easy to program. In fact, it uses the same

programming language and IDE, which is probably part of the reason for its success.

To program the Teensy, the user must first install Teensyduino, a software add-on for the Ar-

duino IDE. Another support application included in this package is the Teensy Loader, responsible

for managing the Cortex-M4 compilation and upload stages. After the installation of this software,

the user can connect the microcontroller to a computer via USB cable and use the Arduino IDE

to write, compile and upload new programs.

Although it is common to call Arduino a programming language, it is actually a simplified

form of C/C++, imbued with a set of functions to facilitate microcontroller programming. These

functions include the ability to easily address analog or digital pins or the automatic prototyping of

functions in the preprocessing stage. The Teensyduino library follows the same exact conventions

of Arduino but with additional functions specific to the Cortex-M4.

Prynth’s distribution ships with a ready-to-use Teensy program that the user must compile and

upload. This program readily handles sensor signal acquisition, data conditioning and transmission

to the Raspberry Pi. It can also receive commands from the RPi, used to set states on the

microcontroller program. The tasks carried out by the Teensy could be summarized as:

• Analog signal acquisition.

• Digital signal acquisition.

• Driving multiplexer boards.

5.6 Sensor Signal Acquisition 87

• Management of data memory banks.

• Data conditioning.

• Send sensor data to the Raspberry Pi.

• Receive commands from Raspberry Pi.

• Encoding and decoding of serial messages.

• Message integrity checks.

Classes and Main Loop

There are two principal classes in the Teensy’s firmware program: the SensorBuffer class and

the Filter class. The SensorBuffer class creates a single first-in-first-out (FIFO) buffer, in which

sensor data is queued before processing and transmission. The Filter class contains several different

processing units that apply mathematical transformations to the raw sensor data.

Sensor data and processing objects are stored in bidimensional arrays, allowing for the indexing

of 16 channels with 8 sensors each. The first 10 channels correspond to the 10 multiplexers and

the remainder 6 are reserved as placeholders for digital sensor data. All sensor data is represented

by 32-bit normalized float numbers.

The main loop of the program scans the SensorBuffer object’s queue for data and retrieves new

entries, each containing a sensor identification number and the raw data value. The data value is

then processed using the Filter class and sent to the Raspberry Pi. Lastly, it checks for any input

messages on the serial input buffer and processes them before continuing the loop.

Signal Acquisition

Parallel to the main loop, there is a timed callback function that matches the sampling frequency of

each sensor. At each tick, this callback function increases a sensor index, writes the corresponding

values to the digital pins of the multiplexer bit clock and triggers the reading of the corresponding

ADC pin. The data value is then added to the Sensor Buffer queue together with a sensor index.

88 Prynth: a Framework for Embedded DMIs

This function is attached to an interrupt handler, which stops the main loop during execution,

thus guaranteeing constant acquisition frequency and avoiding any data corruption when pooling

incomplete data from SensorBuffer. All analog data is sampled at 12 bits, corresponding to 4085

possible values.

Digital sensors have many different specifications. Sometimes they use dedicated software

libraries to access the IC’s memory registers. To use digital sensors with Prynth, the user must

add sensor specific code to the base Teensy program. The latter readily includes blank digital

sensor initialization and reading functions. Once the raw data is held, it is equally added to the

sensor buffer for processing, using an arbitrarily chosen channel and sensor number from those

available for digital sensor signals (channels 11–16).

Data Conditioning

The Filter class implements three different types of processing units: a simple first-order low-pass

filter, the One Euro filter (Casiez et al. 2012) and a Boolean processor.

A finite impulse response low-pass filter is commonly used to smooth sensor data, eliminating

jitter at the cost of added lag. It is a simple and cheap process but still useful for basic noise

filtering.

The One Euro filter aims at being an efficient algorithm for signals that require high precision

and responsiveness. The One Euro filter is essentially a low-pass filter but with an adaptive cutoff

frequency that changes according to the signal differential. At low speeds a low cutoff is used to

reduce jitter at the cost of the introduced lag, but at higher speeds the cutoff value is set to a

higher value, reducing lag and increasing responsiveness.

The last processing unit is what we loosely call a Boolean processor. When the raw value of

a sensor crosses 0.5 upwards, the value is set to 1 and when it crosses it downwards it is set to 0.

The Boolean processor is particularly useful for digitizing values from switches connected directly

to Muxi’s analog inputs.

5.7 Support Software 89

Serial Communication

Once data is acquired and queued in SensorBuffer, it can be retrieved, normalized and sent to the

Raspberry Pi via serial connection. Prynth’s custom serial protocol uses a packet composed of a

sensor identification number, the sensor data value and a checksum used for the verification of the

message’s integrity. The sensor data value can be arbitrarily expressed in 1 byte (low resolution)

or 4 bytes (high resolution). The full packet then passes through an encoding function, which

adds two delimiting characters to mark the beginning and end of the message, namely the $ and

* characters. The message is then ready for dispatch and written to the serial output object. The

UARTs at both ends (RPi and Teensy) are set to a baud rate of 3MHz.

As previously mentioned, the Teensy can also receive control messages from the Raspberry Pi.

These messages are used to set sampling frequency, data resolution, data processor parameters

and to enable or disable sensors. The main loop of the program starts by checking the serial input

buffer of the Teensy. If there is data available, the timer and interrupt functions are stopped and

the serial data parsed and processed. The delimiter characters are striped from the message and

a checksum algorithm verifies its integrity. If the message is valid, an acknowledgment packet is

sent back to the Raspberry Pi. If this acknowledgment is not received, the RPi will try to send

the message again, with up to ten attempts, after which an error is thrown. Once all incoming

serial messages have been processed, timer and interrupts are once again enabled and the main

loop restarts.

5.7 Support Software

5.7.1 Linux Operating System

The official Linux operating system for the Raspberry Pi is called Raspbian. It is a derivative

of Debian (Debian 2018), modified to work with the RPi and available on the Raspberry Pi

Foundation’s website (Raspberry Pi Foundation 2018).

Raspbian is distributed in the form of a disk image, a file format that can be used to preserve

90 Prynth: a Framework for Embedded DMIs

all the contents and structure of an operating system volume. The disk image is loaded into a

blank microSD card using any computer with a memory card reader and software to adequately

copy the files. This operation can be done either through a command line interface, using the Unix

dd command line utility, or using GUI software, like the multi-platform Etcher (Balena 2018).

There are two official Raspbian versions: the regular desktop version that includes a window

manager and several bundled applications, and a lite version with the bare-bones of a Linux

system and no window manager. Prynth is built on top of the latter and thus stripped from

any dispensable processes or software that might compete for resources. Although there are some

modifications to the original Raspbian Lite distribution, we have made an effort to keep it as close

as possible to the original. This lean approach assures that Prynth can be easily ported to future

versions of the Raspberry Pi and that the large knowledge base created by RPi users remains

mostly accessible.

Next we describe the modifications made to the original Raspbian Lite.

UART Reassignment

The Raspberry Pi 3 has two UARTs, the PL011 and the so called mini UART, respectively mapped

in the filesystem as /dev/ttyAMA0 and /dev/ttyS0.

The mini UART is a less capable device than the PL011. It has a smaller buffer, with only 8

symbols deep FIFO for both receive and transmit, while the PL011 has separate 16 x 8 symbols

for transmit and 12 x 12 for receive. The mini UART also has a variable baud rate, due to the

fact that it shares its clock with the GPU’s video processing unit, managed by its own frequency

governor.

Prynth uses the PL011 to achieve the maximum performance in serial data transmission. It

benefits from its stable 400 MHz clock and its bigger buffer, helping to minimize any potential

data packet loss or corruption. By using the PL011, the serial communication between the Teensy

and the Raspberry Pi can be pushed to a baud rate of 3 Mbaud, which is a considerably higher

than usually found in standard control data applications (usually under 115200 baud).

5.7 Support Software 91

By default, the PL011 is linked to the Bluetooth transceiver, while the mini UART is set to

provide a debugging serial console. These default mappings are loaded at boot time but they can

be modified to free the UARTs for other purposes. The steps to remap the Raspberry Pi’s UARTs

are described in appendix A.2.

USB Data Speed

As previously mentioned in section 5.5, the Raspberry Pi sometimes malfunctions with USB 1.1

full speed devices that require a constant data transmission. To avoid this problem the LAN9514

controller can be forced to work at 1.x speeds at boot time by setting the dwc_otg.speed kernel

module option to 1 in /boot/cmdline.txt.

dwc_otg.speed=1 dwc_otg.lpm_enable=0 console=tty1 root=/dev/mmcblk0p2 rootfstype=ext4

elevator=deadline fsck.repair=yes rootwait

CPU Governor

Like most modern processors the BCM2837 can work at different frequencies, scaling the clock

speed to meet processing load. Frequency scaling is useful in applications with low processing

requirements or long idle times, where power consumption and heat can be reduced by working at

lower speeds. In Linux, this process is controlled by a software called CPU governor. By default,

the CPU governor is configured with an on-demand state, where the application monitors system

load and sets the CPU frequency accordingly.

In Raspbian we have verified that the stability of the audio processing carried out by Su-

perCollider is greatly compromised by the frequency switching of the CPU governor. The CPU

behaves so that it is constantly shifting between 600 and 1200MHz, creating peeks and drops that

negatively affect audio quality. This problem can be avoided by forcing the governor to always

work at full speed, which can be done by setting the CPU governor to performance on start-up.

92 Prynth: a Framework for Embedded DMIs

sudo echo performance > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

Another method to set the Raspberry Pi to full speed is to completely bypass the CPU governor,

which can be done by adding the following option in /boot/config.txt.

enable_turbo = 1

Job Scheduler

Cron is a software used for job scheduling in Unix systems. Processes can be set to trigger at

desired time intervals or at boot time. The latter is useful to launch the Prynth services at start-up.

Setting new cron jobs can be done by executing the following shell command:

crontab -e

This command opens a text editor that handles a cron job file with all the scheduled jobs. The

Prynth server starts at boot time with the following command added to the default user crontab

file:

@reboot sudo node /home/pi/prynth/server/bin/www

5.7.2 ALSA and JACK

ALSA is a Linux software framework that provides an application programming interface for audio

devices. ALSA is included in the Linux kernel and it is through ALSA that applications access

sound devices such as audio cards.

5.7 Support Software 93

Like many other Linux audio applications, SuperCollider does not access ALSA directly. In-

stead it uses a sound server that acts as a bridge between an audio application and the audio device

driver exposed by ALSA. JACK (JACK Audio Connection Kit 2018) is the de facto sound server

for Linux audio applications and provides several benefits over the lower-level ALSA. It works as

an audio patchbay, handling audio streams as packets that can be shared between applications

and audio devices, allowing for the audio to be freely routed between different applications. JACK

also provides a low latency infrastructure and fine control over system performance parameters

like sample rate, buffer size and number of periods.

JACK facilitates the development of audio applications because it can be used as an ab-

straction layer that bypasses the need to handle the specificities of particular audio or computer

hardware. Another interesting feature of JACK is that it is not the client program that manages

audio threading. The audio program must provide a callback function that is then synchronously

triggered by JACK itself.

There are two different implementations of JACK: JACK 1 and JACK 2. Both use the same

API and protocols, but the difference between both is that version 2 introduces multi-processor

support and a C++ re-implementation. JACK 2 was supposed to substitute JACK 1, but devel-

opers of the original version kept maintaining it, so the two options are still available.

Prynth uses JACK 2, which is launched by invoking the jackd binary and passing the appro-

priate parameters for audio device, sample rate, buffer size and number of periods.

jackd -R -P95 -dalsa -dhw:1 -p256 -n3 -s -r44100

where:

• -R: for real-time operation

• -P: to set the scheduler priority

• -dalsa: to use the ALSA backend

94 Prynth: a Framework for Embedded DMIs

• -dhw: to use the hardware device number 1

• -p: to set the buffer size (powers of 2, typically between 128 and 1024)

• -n: number of periods

• -s: set to softmode, which ignores xruns reports.

The hardware device number is relative to the device list available to ALSA. The first device

(number 0) is automatically attributed to the RPi’s onboard PWM output, while hardware device

number 1 would be equivalent to the second audio device available to ALSA. In the case of Prynth,

this would be the added audio card (either a USB or an I2S solution).

When JACK fails to synchronize audio buffers (for example, if a determined audio process

takes longer than the assigned buffer), it reports an error to the console, called a xrun in JACK

lingo. When many successive xruns happen, JACK can automatically drop the connection to the

audio client so that other audio processes may remain unaffected. The softmode option can be

enabled to have JACK ignore xrun reports and maintain the connections with client applications

even in stress situations.

Higher sampling rates will have higher sound fidelity but will also be more taxing to the system.

The vector size (or number of frames) and number of periods determine the size of the audio buffer

in use. Larger audio buffers represent higher latency but reduce the chances of xruns, resulting in

a more stable audio output when performing demanding DSP.

The theoretical audio latency in seconds can be calculated using the formula:

Latency = (Vector Size / Sample Rate) x Number of Periods

JACK reports a theoretical latency of 17 ms with a buffer size of 256 samples, a sample rate

of 44.1 kHz and three periods. Lowering the buffer size to 128 samples and using only two periods

results in a latency of 8ms. We have pushed Prynth to buffer sizes as low as 64 samples, where it

was still possible to have a clean sinusoidal tone, but more demanding DSP processes might require

5.7 Support Software 95

higher buffer sizes to avoid audio artifacts. I2S sound cards perform well with just 2 periods but

USB sound cards usually require 3 periods.

5.7.3 SuperCollider

SuperCollider (McCartney 1996; McCartney 2002; Wilson et al. 2011) is a computer music pro-

gramming language and synthesis engine, originally developed by James McCartney in 1996. Su-

perCollider saw its third major revision in 2002 and McCartney decided to make it free and open-

source. Since then SuperCollider has grown to become a community effort with the contribution

of many software developers.

According to McCartney, SuperCollider was inspired by Music N languages but aimed to solve

some of its limitations. Music N languages lacked fundamental programming principles, such as

data and control structures or the ability to define user functions. Dataflow languages like Max

or PD are closer to providing features like object-oriented programming and data structures, but

they are still very static in consequence of the manual patching paradigm. Like Music N lan-

guages, SuperCollider uses the notion of instruments as arrangements of DSP units, but adding

the flexibility of a more complete programming language to control them. The other major fea-

ture of SuperCollider is interactive programming, also called “just-in-time” (JIT) programming.

Algorithms can be modified on-the-fly, updating variables, functions or routines, while the main

program keeps running. This same flexibility is valid for the DSP engine, where unit generators

can be inserted or removed from the signal path without any audio interruption or the need for

a compilation stage. SuperCollider is also fully object-oriented and garbage-collected, avoiding

many of the pitfalls of dynamically spawning and killing processes. Another important feature of

SuperCollider is that it has a system of virtual buses that can be used to make any audio or control

signal available to multiple processors, an extremely useful function in parallel audio processing

chains or one-to-many mappings.

In essence, SuperCollider is a stable, highly efficient and full-featured language, with many

functions and architectural details oriented to music and digital signal processing. All of these

96 Prynth: a Framework for Embedded DMIs

features make it one of the most powerful domain-specific languages in computer music and one

that greatly favors real-time applications like DMIs. For these reasons, we believe SuperCollider

to be an optimal choice for Prynth.

As previously mentioned, SuperCollider is divided in two different applications: scsynth and

sclang. Scsynth is an independent sound server that is controlled from sclang via OSC messages.

These messages can describe new DSP chains or update control parameters. A separation between

DSP computation and control language has several benefits. Any error, malfunction or delay in

sclang will not affect scsynth, which will continue to generate sound without interruption. Events

are also time-stamped and can be scheduled to happen in the future, which benefits applications

that have strict timing requirements, such as routines for sound sequencing. Scsynth can also

be controlled from other programs, as long as they can generate and dispatch the correct OSC

messages. A deep integration of the OSC protocol in embedded DMIs could be considered an

advantage, because many of the modern embedded computing solutions already include networking

interfaces. With an OSC infrastructure, it is very easy to exchange data between instruments,

which can be done directly from SuperCollider user programs.

The SuperCollider binary distribution for personal computers is packaged with a third appli-

cation, an IDE that also supervises and controls the scsynth and sclang applications. This desktop

application has all the features expected from an IDE, such as a text editor, a debugging window

and integrated documentation, complemented with several other contextual menu bar options and

status monitoring panels. Alternatively, both scsynth and sclang can run as command line ap-

plications, without the need for the IDE front end. When launched using a shell, sclang prints

the application’s start-up information and then reaches a standby mode with its own interactive

user shell. Figure 5.6 shows a “Hello World” example program written and executed from this

interactive shell.

Because sclang can run as a command line application in Linux, it can also communicate with

other processes or programs through the inputs and outputs commonly made available through

the C Standard Library (stdio). This ability to exchange data streams between applications is

5.8 Bridge Application 97

Fig. 5.6 SuperCollider interactive shell.

considered a standard in Linux and other Unix-based applications, and arguably one of the most

powerful features of these systems. For example, it is through the output function of stdio that the

results of an application are printed to the shell on a command line interface. Prynth and most

of its features are designed around this capability of a flexible interaction between SuperCollider

and its companion Linux applications.

The Raspberry Pi and other ARM platforms are still not officially supported by SuperCollider.

Fortunately, the compilation process is relatively straightforward and requires only minor adjust-

ments in the preprocessing stage. A detailed description of the compilation of SuperCollider for

Prynth can be found in appendix A.3.

5.8 Bridge Application

Pbridge is a Prynth middleware application that runs constantly on the Raspberry Pi and that

acts as a communication relay between the Prynth server, SuperCollider and the Teensy micro-

controller. The first two use the OSC protocol, while the microcontroller uses Prynth’s custom

serial protocol. The pbridge application is written in C, using the liblo (Liblo 2018) library for

98 Prynth: a Framework for Embedded DMIs

OSC communication and the WiringPi library to control the Raspberry Pi’s UART.

The most important function of pbridge is to receive sensor data from the Teensy and send

it to SuperCollider for synthesis control. In pbridge, each serial message is pooled from the RPi

UART, decoded and checked for integrity. If the received message is valid, the sensor data is

encapsulated in an OSC message and dispatched to SuperCollider. These messages can be sent

either to sclang or scsynth via their respective ports. This option can be set by launching pbridge

with the appropriate flag: -s for server or -l for language. The practical difference between these

two modes of sending sensor data to SuperCollider is further explained in section 5.10.

Another function of pbridge is to transcode messages that are sent from the Prynth server to

the Teensy, in order to control the signal acquisition process. These include turning inputs on and

off, changing acquisition sampling rate, changing parameters of the data conditioning processors

or controlling any other function that happens on the microcontroller.

Finally, pbridge also sends data to the Prynth server to provide feedback to the user. For

example, pbridge will throw an error after 10 failed attempts to set a state on the microcontroller,

which could result from any unexpected error with the serial communication. In this case, the

user is given feedback through a message sent to the Prynth server and displayed on the Prynth

web client. Another useful function of pbridge is that it can be set to listen to a specific sensor

value and send the data to an OSC port other than the two reserved for SuperCollider. The

Prynth server can then listen to this port and relay the data in real-time to the web client for data

monitoring.

5.9 Prynth Server

The Prynth server is the pivotal application that integrates all the previously described software

and hardware components. The server can control child applications, manage software processes,

manipulate files and interact with Linux via shell commands. User interaction with the server is

done through a web client application, in the form of a webpage through which the user programs

and configures the instrument.

5.9 Prynth Server 99

First we will explain the functionality of Prynth’s client application from a user perspective,

based on the description of the application’s GUI and by relating those affordances with the

features of the system. After this introduction we will describe in greater detail the architecture

for client/server communication and the interaction between server, applications and operating

system.

5.9.1 Client Application Features and User Interface

In terms of user-level interaction, Prynth’s client application can be divided into the following

major components: the programming text editor, file managers, settings panels and graphical user

interfaces.

The client application is served by the instrument itself and runs on the web browser of any

other device on the same network. It is written entirely in JavaScript, so there is no need for any

extraneous software packages or plug-ins. To access the client application, the user must simply

open the instrument’s uniform resource locator (URL) on a browser. This URL is associated to

the system’s hostname on the local network. The default hostname in Prynth’s distribution is

“raspberrypi”, so the corresponding URL would be raspberrypi.local:3000.

Main Window

One of the main purposes of the web application is to offer an interface to program the instrument.

Since programming is at the core of Prynth, the main page of Prynth’s web application also presents

a layout similar to that of an IDE (see figure 5.7). The majority of the page is occupied by a text

field, in which the user can write new programs using the full extent of SuperCollider’s syntax and

classes.

Prynth also inherits the flexibility of SuperCollider’s interactive programming. It is possible to

write and evaluate new functions of a program that is already running. In SuperCollider, running

a fragment of source code can be done by selecting that portion of text on the editor and using

a keyboard shortcut to trigger the execution. Interactive programming is further discussed in

100 Prynth: a Framework for Embedded DMIs

section 5.9.8.

Fig. 5.7 Main page of front end application.

Below the programming text field there is a second text field to display messages from Su-

perCollider. Most IDEs have some sort of console window to print feedback messages, essential

to programming activities such as debugging a program. In the original SuperCollider IDE, the

console window is also called “Post Window”3.

Adjacent to the editor area and the post window there are several buttons with different

functions. The “Run” button executes the entirety of the SuperCollider source code currently on

the editor. The “Kill” button stops all scsynth DSP calculations and sclang routines, a function

that is often used in SuperCollider as a panic button. “Restart SC” can be used to kill and restart
3Throughout this text we sometimes refer to the post window as console and vice versa.

5.9 Prynth Server 101

the SuperCollider process and aid in the recovery from any locking programming error. The “SC

Help” button opens SuperCollider’s official documentation and “Prynth Help” opens Prynth’s own

documentation. Both documentations are in hypertext markup language (HTML) format and the

pages open in a separate web browser tab, so they can be consulted side-by-side with the editor.

Finally, the post window itself has a dedicated “Clear” button to clear all SuperCollider messages

on display.

On the far right of the window we find several other panels and buttons. The first panel

is a “System Info” panel, that displays real-time information of the system, including uptime,

hostname, assigned IP addresses, CPU usage of both sclang and scsynth, and the amount of free

RAM. Below this information panel there are two buttons to “Reboot” or “Shutdown” the system.

On the bottom, we find two file managers, the first for SuperCollider programs and the second for

sound files. Both panels are composed of a list of files and buttons for loading, saving or deleting

files.

The three remaining buttons, labeled “System”, “Sensors” and “GUI”, open new browser tabs

with different functions, as described next.

System Settings

The System page offers control over several system-wide settings (figure 5.8).

The first panel facilitates the connection of the instrument to a wireless network. Filling the

text fields with the correct authentication credentials and clicking “Connect” will try to authenti-

cate and connect to the specified wireless network, storing the credentials for future use.

The second option panel can be used to easily change the hostname. The hostname is crucial be-

cause it propagates to many important functions of the system, including the format of the OSC ad-

dresses or the server’s root URL. It is convenient to change the default hostname from “raspberrypi”

to any other name that would allow for an easy identification (eg. http://instrument1.local:3000).

The “Default SuperCollider File” is the name of the file that runs automatically after the

instrument has reached a ready-state. The Prynth distribution ships with a default file named

102 Prynth: a Framework for Embedded DMIs

Fig. 5.8 System settings.

“default.scd”, which starts the SuperCollider server and plays a simple chime to provide an auditory

feedback that the booting process is complete.

The "Sensor Data Target" is another important setting because it determines which applica-

tion, sclang or scsynth, will receive the OSC message streams carrying sensor data. Typically a

user would choose to receive this data on the language to use it in an algorithm. On the other

hand, receiving the control data directly on the SuperCollider server allows for different DSP pro-

gramming approaches, where the data can be used as a generator within the DSP chain. More

details about these two techniques are presented in section 5.10. In practice, changing the data

target sets which option flag to be used when starting the pbridge application, as explained in

section 5.8.

5.9 Prynth Server 103

The remainder settings are related to JACK or to how the system interacts with the sound

output device. The “Device ID Number” is used as an index pointing to the sound devices available

in ALSA. In Prynth device number 0 is the Raspberry Pi’s analog output (PWM) and number 1

refers to the first audio device added by the user (USB or I2S sound card). “Vector Size”, “Sampling

Rate” and “Number of Periods” are the typical performance settings of a digital audio system, as

explained in section 5.7.2. The final option in this panel is a checkbox that sets the speed of

the Raspberry Pi USB controller, thus avoiding the audio artifacts with USB 1.1 audio cards (as

explained in section 5.5).

Some of these settings require a reboot, in which cases an HTML pop-up window will prompt

the user to confirm the operation.

Sensor Settings

Prynth’s sensor acquisition system is managed through the “Sensors” page (figure 5.9), which

presents a series of controls that generate real-time messages that are sent to the Teensy via

pbridge application.

The first option is the sensor acquisition sample rate, which can be set between 1 to 200 Hz.

This value represents the acquisition speed for each sensor, independently of how many sensors

are actively being used.

Next we find a grid that represents all possible 128 sensors in a Prynth system, divided into

16 channels with 8 sensors each. The first 10 channels correspond to each of the connected Muxi

boards and the sensor number to their respective physical inputs. Each cell of the grid provides

visual feedback concerning the state of a sensor. An orange background represents that the sensor

is turned on and a gray background that it is off. The grid can also be used to select a specific

sensor, which becomes highlighted by a red border.

The properties panel to the right is used to display and change the properties of each sensor.

A dropdown menu shows which channel and sensor are currently selected (the dropdown menu

itself also works as an alternative selection method). The On/Off checkbox enables or disables the

104 Prynth: a Framework for Embedded DMIs

Fig. 5.9 Sensor settings.

sensor and the “Monitor” option enables real-time monitoring of corresponding data value.

In Prynth, each sensor sends data to sclang using an OSC message with a unique address. The

address starts with the hostname, followed by a configurable string. The default string for each

sensor has a hierarchical format, starting with the channel number, followed by a forward slash

and the sensor number. As an example, the first sensor on the first channel would send messages

on the OSC address /raspberrypi/0/0. The hostname string is fixed but the rest of the address

can be arbitrarily configured using the provided text field. The configuration of custom OSC

messages is useful for descriptive address schemes (eg. /raspberrypi/fx1/gain). It is important

to reinforce that this messaging convention takes into account the hostname of the instrument,

so that changing it (as explained in the previous section) would also result in a change of the

5.9 Prynth Server 105

hostname prefix (eg. /instrument1/0/0). With this convention each instrument can have a unique

namespace.

The data resolution of each sensor can be set to low (1 byte) or high (4 bytes). MIDI controllers

typically use messages with 7 bits for data representation (equivalent to 127 possible values).

Prynth’s lower data resolution uses a full byte (256 values), which already represents twice the

precision of the MIDI standard.

Finally, each sensor can have its own data conditioning processor, with choices of low-pass

filter, One Euro filter and Boolean processor. Choosing a different processor on the dropdown

menu will dynamically change the parameter controls (a low-pass filter will have one input slider,

while a One Euro filter will have three).

The last set of controls has three buttons. The “Save” button saves the current configuration,

so it is automatically recalled on the next start-up. This configuration can also be reloaded at any

time using the “Recall” button and cleared using the “Reset” button.

Graphical User Interfaces

GUIs were not considered in Prynth’s initial specifications. Our objective was to build self-

contained instruments that could work without displays. GUIs seemed of little use in a system

based on a textual programming language and aimed at emphasizing tangible interaction.

This preconception changed when a user described a new use case for Prynth. The goal was

to build an interactive installation that would be exhibited on a museum for several months and

where it would be useful to have some sort of virtual control panel that the museum staff could

operate. This control panel should be accessible through a mobile device, allowing for operations

like changing volume or rebooting the system.

Surely this functionality could be achieved using any third-party OSC GUI software. There are

many of these applications available for mobile platforms. They allow for the creation of custom

GUIs by arranging virtual controls and specifying the format of their OSC output. Another

solution would be to build a custom webpage to send the appropriate commands via Prynth

106 Prynth: a Framework for Embedded DMIs

server. However this would be more difficult to implement because it would require knowledge

about Prynth’s server architecture and the modification of its source code.

The described use case suggested a reevaluation of the purpose of GUIs in Prynth. We began

to imagine a scenario where a musician could start the Prynth instrument and access the server

via mobile device, to be presented with a webpage with GUI controls for adjusting parameters.

These could include simple tuning, synthesis parameters, changing DSP chains or recalling presets.

A GUI layer in Prynth could work as a complementary utility, with no obvious impact on the

autonomy or workflow of the instrument. These GUIs would have to be fully configurable to fit

the functionality of a particular instrument, matching the flexibility of SuperCollider and the rest

of Prynth’s components.

Prynth’s GUI editor follows the same functional principles as many other GUI building appli-

cations. The user populates a blank canvas with different GUI objects that send OSC messages

to sclang. The properties of the GUI elements can be modified, including visual properties (size,

color) or other meta-properties, such as the object’s name and the format of the messages it sends.

Objects can be dragged and freely repositioned anywhere within the canvas.

Figure 5.10 shows a screenshot of Prynth’s GUI editor, with six different types of virtual

objects: a slider, a knob, a number, a switch, a button and a text label. Each object has a small

square on the upper left corner, used as a handle to select or drag objects. Selected objects are

highlighted so they can be easily localized in space.

To the right of the canvas we find various configuration panels. The first element is an isolated

switch labeled “Edit/Play”, which toggles between edit and play modes. The “Play” mode hides

all the property panels and locks the position of the GUI elements on the canvas. Next we find a

properties panel to display and change the values for the currently selected object. These include

the name of the object, current value, x and y positioning coordinates, width and height and color.

Below the properties panel there is a series of buttons to add and delete objects, and also one to

clear the entirety of the canvas. There is also an option to enable a grid mode, increasing the step

of the drag operation for easier alignment. To minimize pointer travel, the whole properties panel

5.9 Prynth Server 107

Fig. 5.10 GUI editor.

can be dragged and repositioned closer to the objects that are currently being edited.

The final panel is a file manager to load, save or delete different GUIs and that operates

similarly to the other file managers in Prynth.

Prynth’s GUIs are built on top of two libraries: NexusUI and Draggabilly. NexusUI (Taylor

et al. 2014; Nexus Web Audio Interfaces 2018) is a JavaScript framework developed by Ben Taylor

and is the source of the HTML 5 GUI elements (sliders, buttons, dials). Draggabilly (DeSandro

2018) is used to add the ability of freely dragging the GUI elements on the canvas. Draggabilly

facilitates this operation by using div HTML containers that inherit the dragging properties via

HTML class. It is inside these div containers that we instantiate the NexusUI objects.

When manipulated, a GUI element sends values to the Prynth server via web socket, which

108 Prynth: a Framework for Embedded DMIs

are then converted to OSC messages and emitted on the SuperCollider port. The format of the

OSC address is built from the object’s name, preceded by the “gui” string.

/gui/myslider

A SuperCollider OSC responder function can then be set to listen to this message address and

used similarly to any other sensor signal. In section 5.10 we demonstrate how to build synthesizers

and map control signals in Prynth.

Prynth’s GUIs can be accessed at any time, via any thin client, using the URL http://

raspberrypi.local:3000/gui or launched in a new tab using the button on Prynth’s front page.

The last edited GUI is automatically loaded and displayed.

5.9.2 Node.js

The Prynth server is built using Node.js (Node.js Foundation 2018c), a technology that recently

became very popular in web server development. Node.js is a runtime environment for JavaScript.

JavaScript was originally developed to run exclusively on web browsers, but with Node.js it can

now be used to run programs on local machines and for virtually any purpose. One of the most

relevant use cases of Node.js is the creation of web servers because developers can now use the

same language for both server and client applications.

Scripting languages are usually not the most efficient but in Node.js scripts are compiled to

machine code at start-up time, making JavaScript programs much leaner. Additionally, Node.js

uses an event-driven model with non-blocking I/O operations. Node.js serves all requests from a

single thread called “event loop”. When a function runs, new events are added to the event queue

that proceeds with any non-blocking operations. If a blocking operation (such as reading a file or

encoding/decoding data) is required, the event loop delegates this operation to a different thread

pool, while the event queue continues to run in parallel. When the thread pool has processed

the blocking operation, it sends data back to the event queue, which continues processing via a

5.9 Prynth Server 109

callback function as soon as it is free to do so. The thread pool itself is capable of multithreading

through native C++ operations of the engine.

This architecture allows for non-blocking behavior, since the event loop continues to run in

parallel while delegating blocking operations to a threaded pool that automatically manages con-

currency. In practice, this means that a web application can continue to be responsive and interact

with the server, even while other blocking processes are being computed. The downside to this

model is the uncertainty as to when a function will return. To assure proper execution order,

functions that depend on the output of other functions must be nested hierarchically via callback

mechanism, sometimes resulting in dense and convoluted algorithms. The great advantage of us-

ing asynchronous non-blocking programming in Prynth is that the web server can be extremely

efficient and lightweight, without any significant impact on the performance of high-priority audio

applications.

JavaScript modules are units of independent code that can be included in a program via require

command. They work similarly to classes and can export object literals, functions or constructors.

Modules developed by third-parties are compiled into libraries and distributed through npm (Npm

2018), a web-based package manager deeply integrated with Node.js. Prynth uses many different

third-party Node.js libraries, some of which depend on yet more libraries. It is out of the scope of

this document to describe every library in detail, mentioning only the most relevant to Prynth’s

core implementation.

In JavaScript, the preferred data format is the JavaScript object notation (JSON). Prynth’s

configuration and GUI files are stored in this format. A JSON file consists of groups of key/value

pairs and can include several data types (number, string, Boolean, array, object). JavaScript has

native functions to conveniently index, query and parse JSON data.

5.9.3 HTTP Requests

The hypertext transfer protocol (HTTP) is the standard application protocol used for data com-

munication between clients and servers of the World Wide Web. HTTP uses a request/response

110 Prynth: a Framework for Embedded DMIs

method. In the case of a webpage, the client (the browser) requests data from a resource on the

server, which in turn responds with data that is rendered by the browser (hypertext, images, video

or sounds). In the early days of the World Wide Web, the most common content was web pages,

but today many web services have online APIs that can respond with any type of arbitrary data,

such as geographical mapping or weather data.

HTTP requests always need some form of identifier pointing to a resource, the most common

being the URL, also commonly called the “address”. Besides fetching data, URLs can also be used

to trigger functions on the server. The HTTP specification defines different types of requests,

identified by a method (also called verb). The most common verbs are GET, used to retrieve

resources from the URL, and POST, used to submit data for processing on the server. A POST

request also contains a body message that can be used to carry any arbitrary data.

Modern JavaScript engines include a more powerful API for HTTP requests, called XML-

HttpRequest (XHR) (World Wide Web Consortium 2018). XHR is the foundation for a series of

web development techniques called asynchronous JavaScript and XML (AJAX) (Garrett 2018).

With AJAX, the client can make asynchronous requests and use the response data via callback

function. In practice, this means that the server no longer needs to respond with a full web page.

Instead, the client can receive partial data and update the page, making it much more interactive.

As an example, the Prynth client can submit a POST request through AJAX, containing a

string with a new SuperCollider program to be executed (interpreted). Here is an example using

JQuery (jQuery 2018), a JavaScript library that simplifies client-side scripting:

$.ajax({method: "POST", url: ’/interpret’, data: {code: ’1+1’}});

In the above example, $ is an alias to the JQuery object, which performs an AJAX request

of type POST to the “interpret” URL, together with the code for the execution of a simple sum

operation. In section 5.9.7 we explain how a client request is handled by the server.

5.9 Prynth Server 111

5.9.4 Express API

Prynth also uses Express (Node.js Foundation 2018b), a web framework that facilitates the de-

velopment of web applications using Node.js. Express is extremely popular due to its simplic-

ity, strong API, good documentation and active community. Creating a server in Express is

extremely straightforward. Here is a simple example of a server, adapted from Express’s docu-

mentation (Node.js Foundation 2018a).

//use the Express framework

const express = require(’express’)

//start the application

const app = express() //start an application

// Set response to GET request on root URL

app.get(’/’, function (req, res) {

res.send(’Hello World!’);

})

//start listening on Port 3000

app.listen(3000, function () {

console.log(’Example app listening on port 3000!’);

})

In this example we can observe that the web application includes a get method to respond to a

GET request. The get method takes a string defining the URL relative to root path (’/’), passing

the request and response objects (req and res) to a callback function. This function then invokes

the send method of the res object, using the “Hello World!” string as an argument. A similar

method can be used to create a response to a POST request:

app.post(’/’, function (req, res) {

res.send(’POST request to the homepage’)

112 Prynth: a Framework for Embedded DMIs

})

In Express, the definition of how an application responds to a HTTP request is called “routing”.

By creating routes, the application listens to matching requests, triggering the associated callback

function. This callback function can operate on the server or respond with data. There are many

types of response methods, including a JSON response (for data transport) and a render function.

The latter can be used to dynamically create HTML from template engines. Prynth uses the EJS

template engine (Eernisse 2018), where variables can be easily passed to the render engine. Here

is an example of the rendering of an index HTML page with a specific title. The router renders

the “myindex.ejs” file using the variable “mytitle”.

The routing method:

router.get(’/’, function(req, res) {

res.render(’myindex’, { mytitle: ’My Webpage’ });

});

The EJS template for the webpage, called “myindex.ejs”:

<!DOCTYPE html>

<html>

<head>

<title><%= mytitle %></title>

</head>

<body>

<p>Welcome to <%= mytitle %></p>

</body>

</html>

5.9 Prynth Server 113

5.9.5 Sockets and Real-time Communication

Web sockets is another technology that can be used for the real-time communication between

client and server. This communication protocol allows both ends to push data over a TCP con-

nection without an explicit request. Web sockets are available to Node.js through the Socket.IO

library (Socket.IO 2018).

In Prynth we use web sockets whenever we need the server to communicate a status back to

the client. This includes Prynth’s Post Window, which receives not only the SuperCollider stdout

stream, but also messages concerning filesystem operations. The client’s system status panel is

also updated periodically by receiving a socket message that is triggered on the server using a

timed routine.

OSC messages are also exchanged between client and server using web sockets as an interme-

diary. An example is the real-time sensor monitoring data available on the sensor settings page.

The Prynth server receives an OSC message from pbridge and relays the monitored value to the

client. The opposite also occurs when a user updates a parameter on the sensor settings page or

manipulates a GUI element. A message is sent to the server via socket, transcoded to an OSC

message and finally dispatched to pbridge or sclang.

Below is an example of how to create a web socket connection on the server and add it to the

Express middleware:

// create sockets

var server = require(’http’).Server(app);

var io = require(’socket.io’)(server);

//add to Node.js application middleware

app.use(function(req, res, next){

res.io = io;

next();

114 Prynth: a Framework for Embedded DMIs

});

It is then possible to emit socket messages to the client. Here is an example of how to send a

message to the Post Window.

res.io.emit(’toconsole’, ’Process complete’);

In turn, the client will have a function that responds to an event named “toconsole” to update

the console’s HTML text field:

<script src="javascripts/socket.io/socket.io.js"></script>

<script>

var socket = io.connect();

socket.on(’toconsole’, function (data) {

$(’#consoleTextarea’).append(data);

});

</script>

5.9.6 Interacting with Linux via Child Processes

Node.js can interact with the Linux operating system by launching new subprocesses through the

child process module. In Prynth, child processes are used to run companion applications (like

JACK or pbridge) or to execute Linux shell commands.

To run local applications, we use the spawn method, which automatically registers event re-

sponders for the stdio streams of the child instance. It is through these event emitters and listeners

that the server communicates with the application.

Shell commands are issued via the exec method, which also attaches a shell to the process. It

then becomes possible to use standard shell functions, such as executing two commands in series

5.9 Prynth Server 115

or piping applications.

Below is a small example of how to write new Wi-Fi settings by concatenating a sequence of

shell commands. It disconnects the networking services, after which it sets the new credentials via

command line application and finally brings the networking services back up.

router.post(’/setwifi’, function (req, res) {

var networkname = req.body.networkname;

var networkpass = req.body.networkpass;

var command =

’sudo ip link set wlan0 down’+

’ && sudo wpa_cli -i wlan0 add_network 0 && sudo wpa_cli -i wlan0 set_network 0 ssid

’+

’\’\"’+networkname+’\"\’’+

’ && sudo wpa_cli -i wlan0 set_network 0 psk ’+

’\’\"’+networkpass+’\"\’’+

’ && sudo wpa_cli -i wlan0 enable_network 0 && sudo wpa_cli -i wlan0 save_config ’+

’&& sudo ip link set wlan0 up’;

var child = exec(command, function () {

res.redirect(’/system’);

})

})

5.9.7 Interacting with SuperCollider via HTTP

Written by Chris Satinger, SuperCollider JS (Satinger 2018) is a Node.js library to control Super-

Collider. With SuperCollider JS it is possible to write JavaScript commands that are transformed

into OSC messages understood by the sclang and scsynth applications. This library is still under

116 Prynth: a Framework for Embedded DMIs

development but already includes several relevant functions, such as starting the SuperCollider

server, creating groups, spawning synths or setting parameters.

In Prynth we do not use SuperCollider JS to its full extent because our goal is to use Super-

Collider programs written in their native language and not in JavaScript. Yet, SuperCollider JS

has a very convenient SCLang object, that elegantly implements the stdio communication with

the application. Stdout listeners are used to report sclang errors, while a interpret method is used

to execute a string piped via stdin.

Here is a simplified program of how sclang is instantiated when the Prynth server starts:

var sc = require(’supercolliderjs’);

var sclang;

function startSclang() {

sc.lang.boot().then(function (lang) {

sclang = lang;

sclang.on(’stdout’, function (text) {

io.sockets.emit(’toconsole’, text);

});

});

};

When booting sclang, an object instance is returned and attributed to a global variable, so

that it can be controlled from multiple scopes on the server. A listener function is attached to

stdout, returning the messages of sclang’s start-up process to the console.

In Prynth we also create a global event responder, so we can issue “interpret” commands to

execute SuperCollider code from anywhere on the server. Like the start-up process, this event

responder includes a callback function that returns to the client’s console.

5.9 Prynth Server 117

app.on(’interpret’, function (msg) {

sclang.interpret(msg)

.then(function(result) {

io.sockets.emit(’toconsole’, result);

})

.catch(function (error) {

var errorStringArray = ;

io.sockets.emit(’toconsole’, JSON.stringify(error));

});

});

The last step is to create the corresponding route function, to respond to client POST requests

transporting the code for evaluation (see section 5.9.3). The acknowledgment of a successful

request is done by returning a standard HTTP status code to the client (200 for OK).

router.post(’/interpret’, function (req, res) {

res.app.emit(’interpret’, req.body.code);

res.sendStatus(200);

});

5.9.8 SuperCollider Editor

Prynth’s code editor is developed on top of CodeMirror (CodeMirror 2018), a JavaScript text editor

that runs entirely on the browser. CodeMirror’s text buffer is a plain HTML textarea, which greatly

facilitates access through basic JavaScript get/set operations. CodeMirror also implements many

important features of a programming editor, including history, bracket matching, syntax colorizing

and configurable key bindings.

Interactive programming is one of SuperCollider’s distinctive features. The user can write a

part of the program, execute it, and then continue to write other subprograms during runtime. In

118 Prynth: a Framework for Embedded DMIs

the desktop version of SuperCollider this behavior is implemented on the IDE itself. A code frag-

ment can be selected and triggered to execute via a shortcut key (Command+Enter on a Macintosh

and Control+Enter on Linux and Windows systems). If there is no text selection, SuperCollider

will try to execute the code within a matching pair of parenthesis. If there is no matching pair,

it will try to execute the line where the cursor is positioned. Although this behavior may seem

confusing at first, it quickly becomes second nature after some experience with SuperCollider.

Interactive programming may be used in many other contexts, but it is particularly interesting

in the context of DMIs. For example, the fine-tuning of a synthesis algorithm, the incremental

adjustment of mappings or the morphing between machine states can be done interactively while

the instrument is being played.

In Prynth we have tried to emulate the exact same behavior. When the execution shortcut key

is pressed, there is an algorithm that retrieves the string hierarchically through either parenthesis

matching, string selection or string at cursor position and passes it to the interpret POST request

(as previously explained in sections 5.9.3 and 5.9.7).

SuperCollider has other important default key bindings. The first is Command+. , used to

stop all DSP and routine processing. In Prynth this functionality is achieved by triggering the in-

terpret POST request with the programmatic version of the command: “CmdPeriod.run”. Another

important shortcut, also replicated in Prynth, is Command+d , which searches the SuperCollider

documentation for the string where the cursor is resting. In Prynth, we use the HTML version of

SuperCollider’s documentation and inject the collected string into a search field that returns the

help results.

5.9.9 Files

SuperCollider programs and other persistent data are stored in files that are read, parsed, modified

and written using the fs filesystem module of Node.js.

In the case of SuperCollider programs, they are stored in a plain text format with the “scd” file-

name extension. This is the same file format used by the desktop version of SuperCollider, making

5.9 Prynth Server 119

files completely interchangeable between systems. To save the current program, a JavaScript func-

tion fetches the current string on the HTML textarea shared with CodeMirror and asks the user

for a new file name. It then generates a POST request with address “supercolliderfiles”, containing

the program string, a “save” action keyword and the name for the file. On the server side, the

equivalent route is triggered, passing the message body to the writeFile method of the filesystem

object. The respective callback function emits a message to the Post window, confirming the

success of the file writing process.

var fs = require(’fs’);

router.post(’/supercolliderfiles’, function (req, res) {

var path = ’home/pi/prynth/server/public/supercolliderfiles/’;

if(req.body.action === ’save’){

fs.writeFile(path + req.body.filename, req.body.code, function (err) {

if(err) {

res.io.emit(’toconsole’, ’error saving file’);

} else {

res.io.emit(’toconsole’, ’file saved’);

}

});

};

})

The loading of a file is a similar operation. The POST message sends the name of the file to

be read, together with the “load” action. The corresponding route function on the server reads

the file using the readFile method and emits the string to the client that receives it and updates

the HTML textarea.

Configuration files are stored in the JSON format, which are easy to manipulate via JavaScript

objects. Here is an example of Prynth’s main configuration file, which stores the system settings

120 Prynth: a Framework for Embedded DMIs

explained in section 5.9.1.

{

"defaultSCFile": "default.scd",

"defaultGUIFile": "example.gui",

"wifinetworks": [

"mySSID",

"myPassword"

],

"hostname": "raspberrypi",

"sensorDataTarget": "l",

"jack": {

"device": "1",

"vectorSize": "256",

"sampleRate": "44100",

"periods": "3",

"usb1": "false"

}

}

Audio files are the third type of files handled by the Prynth server. They can be uploaded to the

“soundfiles” public folder and then loaded from any SuperCollider program. A binary file can be

uploaded by the client application using a POST request with a multipart/form-data type, which

allows for the combination of different types of data into a single body message. This multipart

POST is then received and handled in the server using the Multer library (Multer 2018), which

facilitates extraction and merging of the several parts of the binary file.

5.10 Sound Synthesis and Mapping in Prynth 121

5.10 Sound Synthesis and Mapping in Prynth

In this section we provide some examples of how to create simple synthesizers and map control

signals in Prynth. Our goal is not only to offer comprehensive examples but also to demonstrate

the different programming techniques available.

5.10.1 Creating a Synthesizer

In SuperCollider, synthesizers are built using the SynthDef class, which holds a definition of an

arrangement of unit generators and respective control arguments. Below is an example of a simple

FM synthesizer:

SynthDef(\fm, { |freq = 220, modIndex = 0.5, modAmp = 0.5|

var carrier, modulator;

modulator = SinOsc.ar(freq * modIndex, 0, freq * modAmp);

carrier = SinOsc.ar(freq + modulator, 0, 0.5);

Out.ar([0,1], carrier);

}).add;

In this example we have a SynthDef with name “fm”, which defines an instrument with argu-

ments “freq”, “modIndex” and “modAmp”. Inside the function we declare two variables that will

hold the carrier and modulator signals. The signals are created using the sinusoidal oscillator

object “SinOsc”, in which the first argument is frequency, the second phase and the third a value

by which the output signal will be multiplied. The frequency and amplitude parameters for the

modulator are derived from the multiplication of the synth’s base frequency (SynthDef’s own freq

argument) by their respective modulation index or modulation amplitude. The carrier signal then

122 Prynth: a Framework for Embedded DMIs

uses the same base frequency, to which it adds the signal of the modulator. The final gain of the

carrier signal is adjusted using a multiplier of 0.5. Finally, the “Out” object outputs the signal.

It takes a first argument with the destination output and a second with the signal itself. Our

destination output is the array of channels 0 and 1, equivalent to the left and right channels of a

stereo output. The signal we wish to output is the carrier, which is duplicated and assigned to the

left and right channels, according to SuperCollider’s automatic multichannel expansion4. Last, we

invoke the add method, which sends the synthesizer definition from sclang to scserver.

The synthesizer can now be instantiated and assigned to a global variable named “a”.

a = Synth(\fm);

The set method is used to modify any of the input arguments of the synthesizer.

a.set(\freq, 440);

a.set(\modIndex, 0.7, \modAmp, 0.9)

5.10.2 Mapping Sensor Data

With an operational synth, we can now create an OSCdef responder function that is triggered

every time sclang receives an OSC message on the defined address.

OSCdef(\sensor1, {|msg|

var rawValue, cookedValue;

rawValue = msg[1];

cookedValue = rawValue.linlin(0,1,220,440)

a.set(\freq, cookedValue);

4For more information on multichannel expansion please consult the official SuperCollider documentation (Su-
perCollider 3.10.0 Help 2018)

5.10 Sound Synthesis and Mapping in Prynth 123

}, ’/raspberrypi/0/0’);

The OSCdef object will have at least three essential parameters: a unique name, a function and

a string with the OSC address that will trigger the callback function. In our example, the trigger

is set to OSC messages with address /raspberrypi/0/0, which is the default message associated to

the first sensor on the first multiplexer (0/0) of the instrument with hostname “raspberrypi”.

Inside the function, the first argument is the OSC message received, assigned to the variable

“msg”. The message is an array, where the first element is the trigger address, followed by any

other elements of the OSC message. In the previous example, the array will have two elements:

[/raspberrypi/0/0, \textit{value}].

In the callback function we retrieve the data value by index and assign it to variable “rawValue”.

Since we know that all sensor values in Prynth are normalized, we can perform a linear scaling

using the linlin method, which accepts low and high input values (0 and 1) and scales them to the

desired low and high output range. The rescaled value, now ranging from 220 to 440, can then be

used to set the frequency parameter of our synthesizer.

A small drawback is that the user must create OSCdef functions for each individual address.

Another way to map parameters to synthesizers is to use control buses as intermediaries. Once

we hold the sensor value in the OSCdef function, we can use it to set the value of a control bus

from which the synthesizer reads continuously. Below is a complete program with a bus mapped

to the frequency parameter of our FM synthesizer.

fork {

s = Server.local;

124 Prynth: a Framework for Embedded DMIs

SynthDef(\fm, { |freq = 220, modIndex = 0.5, modAmp = 0.5|

var carrier, modulator;

modulator = SinOsc.ar(freq * modIndex, 0, freq * modAmp);

carrier = SinOsc.ar(freq + modulator, 0, 0.5);

Out.ar([0,1], carrier);

}).add;

b = Bus.control(s, 1);

OSCdef(\sensor1, {|msg|

b.set(msg[1].linlin(0,1,220,440));

}, ’/raspberrypi/0/0’);

s.sync;

a = Synth(\fm);

a.map(\freq, b);

}

Notice how we enclosed the whole program inside a fork function. Fork is a convenience method

to create a routine, so that we can then control the timing of the enclosed function by suspending

it for a determined time (similarly to a delay function in C). This procedure is important to

SuperCollider because we must make sure that the SynthDef is received and processed by scserver

before trying to instantiate a synth. In the routine, we could wait for a determined time using the

wait method, but this would not guarantee that the SynthDef had indeed compiled. Instead, the

scsynth has a convenience sync method (notice the server is initially assigned to global variable

s), which tells the routine to wait for an acknowledgment from the SuperCollider server that all

asynchronous commands have been completed. The routine may then continue after receiving this

signal.

5.10 Sound Synthesis and Mapping in Prynth 125

After adding the SynthDef, creating a control bus and creating the OSCdef function to update

the bus value, we can finally instantiate our synthesizer and use the map method to bind the

parameter freq to the control bus.

5.10.3 One-to-Many and Many-to-One Mappings

SuperCollider’s buses are also convenient for more advanced types of mapping. Buses can have

multiple listeners (synths or their mapped parameters) to create one-to-many mappings. We

could use the same OSCdef to update two different control buses and then map them to different

parameters of our synth (notice the different scaling operations).

b = Bus.control(s, 1);

c = Bus.control(s, 1);

OSCdef(\sensor1, {|msg|

b.set(msg[1].linlin(0,1,220,440));

c.set(msg[1].lincurve(0,1,0,1,5));

}, ’/raspberrypi/0/0’);

a.map(\freq, b);

a.map(\modAmp, c);

An example of a many-to-one mapping could involve two input values that create a third

composite value. In the following example, the value of the second sensor (address /0/1) is used

to modify the output range of the first sensor, in turn mapped to the frequency control of the

synth. A solution would be to use the bus get method (asynchronous) to extract the latest value of

bus c and use it in the callback function that updates bus b. Notice the use of the round method

to quantize the multiplier.

126 Prynth: a Framework for Embedded DMIs

b = Bus.control(s, 1);

c = Bus.control(s, 1);

OSCdef(\sensor2, {|msg|

c.set(msg[1].linlin(0,1,0,1,5).round);

}, ’/raspberrypi/0/1’);

OSCdef(\sensor1, {|msg|

c.get({ |value|

b.set(msg[1].linlin(0,1,220,440*value));

});

}, ’/raspberrypi/0/0’);

5.10.4 Using Sensor Signals as Unit Generators

The previous examples assume that pbridge is receiving the sensor values from the Teensy and

relaying the data to sclang, but it is also possible to set pbridge to send the data directly to the

SuperCollider server. By setting the appropriate start-up flag in pbridge, its OSC commands will

instead use the SuperCollider server port, which will receive data directly on control buses. Buses

can also be accessed as if they were unit generators using the In object. In the following example

we use bus number 100 to control the frequency of a low-pass filter.

SynthDef(\filter, {

var source, filter;

source = PinkNoise.ar();

filter = LPF.ar(source, In.kr(100).linlin(0,1,20,5000));

Out.ar([0,1], filter);

5.10 Sound Synthesis and Mapping in Prynth 127

}).add;

a = Synth(\filter);

Bus 100 corresponds to the first sensor on the first multiplexer. SuperCollider can assign any

number of arbitrary control buses, but in Prynth we have established a convention to facilitate

addressing. The target bus number is derived from the following formula:

bus = (multiplexer x 10 + sensor) + 100

This formula concatenates the multiplexer number with the sensor number and offsets the

value by 100. Note that indexes start at 0. To provide another example, sensor 5 on multiplexer

7 would be equivalent to bus 164 (6x10+4+100).

The interesting approach to this programming style is that control data can be understood

as DSP signals and used in unconventional processing chains that include feedback delays, exotic

chaotic noises or non-linear filters.

5.10.5 File Access from SuperCollider Programs

In Prynth we also created conventions to access program and audio files. The absolute paths to

these directories are the following:

~supercolliderFiles = "/home/pi/prynth/server/public/supercolliderfiles/";

~soundFiles = "/home/pi/prynth/server/public/soundfiles/";

The variables containing the path strings are then used to access any file listed on the Super-

Collider and sound file managers of the Prynth client application. Accessing other SuperCollider

programs is particularly useful because it allows the division of larger programs into multiple

files. A SuperCollider subprogram can be executed from within a parent program using the load

128 Prynth: a Framework for Embedded DMIs

method.

s.waitForBoot{

~supercolliderFiles = "/home/pi/prynth/server/public/supercolliderfiles/";

(~supercolliderFiles++"chime.scd").load;

};

Above is the default SuperCollider program that runs when Prynth is first started. It triggers

the server booting and waits until the process is complete to then execute the chime.scd file, a

different SuperCollider program that plays a feedback sound.

Audio files have many uses in sound synthesis. The simplest example would be to load an

audio file to memory using the Buffer object and then play it using PlayBuf, which receives three

parameters: number of channels, identification number of the buffer and a looping flag.

fork{

~soundFiles = "/home/pi/prynth/server/public/soundfiles/";

~buffer = Buffer.read(s, ~soundFiles++’a11wlk01.wav’);

s.sync;

play{PlayBuf.ar(1, ~buffer.bufnum, loop:1)}

}

5.11 Distribution and Support Materials

5.11.1 Licensing

Prynth is entirely free and open-source. The accompanying license is a Creative Commons License

Attribution-ShareAlike (CC BY-SA), allowing for free use, modification and even commercializa-

5.11 Distribution and Support Materials 129

tion. The only restrictions are that credit must be given to the original developers and any mod-

ification should fall under the same license. This type of license guarantees that Prynth remains

freely accessible and that users who decide to improve it maintain the same spirit of knowledge

sharing.

5.11.2 Distribution

Prynth’s source code is hosted at GitHub (Franco, Venkatesan, et al. 2018), an online service that

stores files using the version control system Git. Git facilitates collaboration between programmers,

who can push and pull different versions of the source code. New functionalities are implemented

in side copies called branches and then merged with the main version once they are fully functional

and tested. Github is one of the most popular online repositories for source code because it is free

for open-source projects and offers valuable features, such as statistics, bug report systems and

the hosting of a project website.

The Prynth end user distribution is in the form of a single compressed image file, ready for the

Raspberry Pi’s SD Card. Image files are large binaries, easily surpassing the file sizes permitted

by GitHub (meant for the storage of small source code files). Prynth’s image size is close to 1 GB,

so it is instead hosted at IDMIL’s servers, with the download URL referenced from the project’s

homepage. Downloading Prynth does not require any type of user registration.

5.11.3 Website

The website is the main hub of the Prynth project. It is organized into the following sections:

About, News, Instruments, Create and Community.

“About” is an introductory text, that briefly explains the project to newcomers. The “News”

section is used to publish RDF site summary (RSS) feeds that advertise new releases, bug fixes

and public initiatives. The “Instruments” section is a gallery of instruments built with Prynth,

including images and a short description written by its makers. It illustrates the possibilities of

the framework by showcasing practical examples.

130 Prynth: a Framework for Embedded DMIs

The “Create” section is where users can find all the information to create their own instruments.

It includes a general description of the framework, a downloads page and a documentation section.

The “Downloads” page includes links not only to the Linux image file but also the PCB design

files and the Teensy source code.

The “Community” section links to an online forum hosted at Google groups, requiring an

authentication via a valid Google account. We have observed that most users prefer to use social

media for public interaction and email for private messaging. Therefore the forum tends to be

mainly dedicated to bug reports or technical inquiries that should be archived and available for

future consultation.

Fig. 5.11 Prynth website.

5.11 Distribution and Support Materials 131

5.11.4 Technical Documentation

Most of Prynth’s documentation is in the form of cookbooks with step-by-step instructions. They

teach new users how to assemble the base system, connect different types of sensors and pro-

gram their first synthesis and mapping examples. All the instructions are accompanied by high-

resolution macro photography to visually illustrate delicate operations, such as the positioning and

soldering of electronic components. Many of these operations also include notes about particular

obstacles or alternative methods.

Some users mentioned that they were able to easily assemble new systems by closely follow-

ing these strongly descriptive and visually-oriented materials and that the cookbook format was

fundamental to overcome any lack of confidence in their technical skills.

Fig. 5.12 Online documentation.

132 Prynth: a Framework for Embedded DMIs

5.12 Conclusions

Prynth is a complete hardware and software solution for the development of new embedded DMIs.

To create this framework we have established a series of requirements that reflect the potential

advantages of embedded architectures, while maintaining the essential characteristics and features

of past DMI models.

We have adopted the Raspberry Pi, the most popular single-board computer, complementing

it with a dedicated signal acquisition solution, based on the integration of a supplementary mi-

crocontroller. The subsystem allows for the connection of up to 80 analog sensors and 48 digital

sensors, and also performs onboard data conditioning. This solution guarantees a predictable and

jitter-free signal acquisition, while freeing the single-board computer for audio DSP tasks and

other interactive behaviors.

A Prynth instrument is configured and programmed using a web front end application, served

by the instrument itself. It can be accessed from any thin client on the same network, without the

need for a dedicated computer or any other sort of host software.

User-level programming is done through an embedded JavaScript text editor, using the Su-

perCollider programming language, one of the most powerful and mature solutions for computer

music. The front end application also includes several control panels and side applications, includ-

ing the configuration of the acquisition subsystem or the creation of custom GUIs. File managers

allow for the storage of multiple programs, sound files and GUIs that can be saved and recalled

at any time. The Prynth server is extremely lightweight and its idle load almost negligible due to

the asynchronous processing of Node.js, which minimizes any impact on DSP processes.

Prynth aims at delivering a solution useful for both intermediate and expert users. It is

especially designed to be easy to assemble at home and takes care of many of the technical aspects of

building an embedded DMI. It still requires some level of electronics and programming proficiency,

but we believe that it offers a good compromise between complexity and flexibility. Expert DMI

developers could probably bypass Prynth and implement their own systems from the ground up,

5.12 Conclusions 133

but we have received reports of significantly advanced use cases, leading us to believe that Prynth

also represents a good value for this class of users.

Prynth is freely accessible and accompanied by in-depth documentation, such as cookbooks

with step-by-step assembly instructions and examples of synthesis and mapping applications. Tech-

nical troubleshooting is done through a public forum, where users can exchange information first

hand. Some users have explicitly reported their satisfaction with Prynth’s ease-of-use and its

comprehensive documentation, referring to how it helped them overcome insecurities in technical

knowledge, leading to an efficient and trouble-free implementation.

134

135

Chapter 6

Results

6.1 Dissemination

In this section we present Prynth’s dissemination activities, which include promotional events,

press articles, and participations in conferences and art festivals.

6.1.1 Social Media

Social media has become an important and almost inevitable tool for communication on the

Internet. Prynth’s social media presence is done through a Facebook page (Franco 2018a), to

which users can subscribe to receive direct notifications about new content. Facebook is also

organized in interest groups, so it becomes easy to redirect any new content to these groups, some

of which are exactly specialized in the construction of synthesizers.

At the time of writing Prynth has about 500 active Facebook followers, half of which subscribed

to our page during the initial launch in November of 2016. From then on, this number has been

growing slowly but steadily, with about 10 new subscriptions per month but with no signs of

deceleration.

136 Results

6.1.2 Public Talks

The Prynth framework was presented at the Voltage Connect Conference of 2017 (Berklee College

of Music 2018), organized by the Berklee College of Music and themed “Pioneers, Players, Thinkers,

Purveyors”. This conference was particularly interesting to us because is was more in touch with

performers and industry than academic conferences like NIME. Speakers included people like

Dave Smith (Sequential LLC 2018), Amos Gaynes (Moog Music 2018), Mark Ethier (iZotope

Inc. 2018), Ernst Nathorst-Böös (Propellerhead Software 2018), Mate Galic (Native Instruments

2018), Jordan Rudess (Dream Theater 2018) and Suzanne Ciani (Suzanne Ciani 2018). Voltage

Connect allowed us to showcase Prynth and receive feedback from the professional music industry.

Everyone we talked to seemed to agree that SoC-based platforms, that make products like mobile

phones, tablets and even the Raspberry Pi possible, need to be seriously considered because they

may represent the future of computer-based musical instruments.

We also participated in the conference eNTERFACE’17 (eNTERFACE’17 2017), the Inter-

national Summer Workshop on Multimodal Interfaces, which took place at the Centre of Digital

Creativity (CCD) of Escola das Artes at the Universidade Católica Portuguesa. eNTERFACE is

an informal academic gathering for researchers working on multimedia interaction design. The

agenda is constituted by a series of intensive workshops and keynotes that happen over the course

of one month. On the third week we did a keynote on Prynth and exchanged ideas with this group

of HCI researchers. The topics of discussion centered around the design of new types of interac-

tive musical devices and how they may fit a more conceptual outlook on the future of tangible

interaction.

6.1.3 Specialized Media

One aspiration we had with this project was to be able to reach outside academia. For the public

release of Prynth we sent information to online media publications related to electronic music,

with the hope that they would find the project interesting and help with its dissemination. This

information included a small descriptive text about Prynth and a link to a video with a demon-

6.1 Dissemination 137

stration of The Mitt, the first instrument built using our framework (see section 6.2.1). Prynth

got a significant attention from these media outlets, which resulted in dedicated articles in online

publications like FACT Magazine (Wilson 2018), Hackaday (Williams 2016) and Synthtopia (Syn-

thtopia 2016). In the first weeks after publishing, our promotional video (Franco 2018b) got about

12,000 views and has now grown to about 20,000 views.

The interaction with these popular publications allowed us not only to reach a wider audience,

but also to observe how their interests intersect Prynth.

FACT Magazine (Wilson 2018) is one of the most prestigious online music publications in the

UK. It focuses on electronic music but extends to various other topics like fashion trends, youth

culture and art. FACT magazine also tries to examine innovation in music and to stimulate a

discussion around its cultural impact.

On the other hand, Hackaday (Williams 2016) is a website that showcases DIY projects, many

of them related to electronics and computing. The discussions found in Hackaday’s articles tend

to be more focused on technical aspects, appealing to all those who like to play with technology.

Still, some of these discussions often divert to interesting parallel topics of the Maker movement,

such as sustainability or ethics. Hackaday’s writer Elliot Williams had the following to say about

Prynth:

“The Most Flexible Synthesizer is DIY, Raspberry Pi ... Ivan Franco sent us this

great synthesizer project that he’s working on. Or maybe it’s more like a synthesizer

meta-project: a synthesizer construction set ... The system is brand new, but check

out the Mitt synth device that Ivan already made, with a video embedded below. It’s

a good overview of one of the possible hardware configurations, and a sweet demo of

a couple SuperCollider routines ... With the computer inside the box - the Raspberry

Pi in question - you can easily make this system into a standalone musical instrument,

without tethering it to your laptop. Ivan is trying to create an interesting and easy-

to-use empty vessel for you to pour your hardware and software synthesizer dreams

into. Everything is open source, and aside from the Pi and the price of potentiometers,

138 Results

this is a dirt-cheap device. You’re not going to be limited by SuperCollider, and we’re

guessing that you’re not going to be limited by 80 inputs either. What’s the craziest

sound-maker you can think of ” (Williams 2016)?

Comments from Hackaday readers included:

“Wow, Awesome! Best audio project that I have seen in a long long time and there

is so much that must have gone into software development”.

“Awesome! This synthesizer really redefined the concept of ‘writing’ a song”!

Synthtopia is a smaller niche website, dedicated to showcasing new synthesizers to a target

audience of expert electronic musicians. Discussions tend to center around new devices on the

market and how they can serve these musicians. In essence, Synthtopia exposes Prynth to a group

of knowledgeable and strong critics. One reader wrote the following about Prynth:

“I’ve been a die-hard hardware guy since I started doing electronic music in the

early 1990’s, meaning I am always a bit skeptic about this sort of devices, but man, I

have to say that this concept has wings to fly and I’m all in”!

These and many other opinions or interactions we had through these communication channels

allowed us to create a broader understanding of how different user profiles perceive the value

proposition of our framework. This marketing action was crucial for the dissemination of the

project and the feedback we got gave us the confidence to believe that Prynth represents a valuable

asset to a greater audience and an important tool for makers of embedded DMIs.

6.1.4 Events

There was a number of other assorted events in which Prynth marked its presence. In 2017 Marcelo

Wanderley challenged his class of students to build an instrument with Prynth. Because time was

short, we decided to have students build a replica of the Mitt. They were given all the necessary

6.1 Dissemination 139

bare materials and about a month later we had 10 perfectly working instruments. The students

reported having no difficulty whatsoever in completing the task. One student even added his own

modifications, by including an inclinometer and mapping the Mitt to the Ableton Live DAW.

Prynth was also presented in two interest group meetings in Montreal. The first was Club

Framboise (Club Framboise 2018), a gathering of people dedicated to showcasing all types of

DIY projects that use the Raspberry Pi. This was an eclectic group, since there were many

engineers of all ages, but all with little understanding about electronic music or the world of

DMI creation. They all responded with great enthusiasm because for them Prynth represented a

creative application well outside their usual engineering projects in fields like automation, robotics

and networking. The second event was the SuperCollider Montreal user group meeting. This group

of people gathers every month in Montreal for informal knowledge sharing about all kinds of music

and art projects using SuperCollider. It includes a significant number of experts that represent

both a major target user group and potentially the hardest critics of Prynth. It was very positive

to come to the conclusion that the group shared the same interest for embedded platforms and

considered Prynth to be a very complete and thoughtful implementation of SuperCollider on those

platforms. Some people in the group are also contributors to SuperCollider’s core development.

From their own initiative, they created a contact between the development teams of SuperCollider

and Prynth, which are currently engaged in discussions about better integration strategies between

the two technologies.

In the summer of 2018, Prynth was also presented at the 25th edition of the Sónar Festi-

val (Advanced Music S.L. 2018), which happens every year in Barcelona, Spain. Sónar is probably

among the top ten electronic music festivals of the world, with 2018 setting the record for 126,000

visitors. We participated on a committee of artists and researchers from Canada, curated by Mu-

sicMotion (MusicMotion 2018) and sponsored by the Canada Council for the Arts. MusicMotion

is a Montreal organization focused on bridging researchers and artists interested in the exploration

of technology and new media art. For three consecutive days we showcased Prynth and the Mitt

to hundreds of people that visited our booth. This promotional action resulted in the possibility

140 Results

of engaging firsthand with the public, which proved to be an extremely demanding endeavor but

also a highly rewarding one.

A similar showcase happened in September of 2018, at Rythmopolis (Rythmopolis 2018), which

took place at the Place des Festivals in the Quartier des Spectacles, Montreal. Rythmopolis is

a large-scale immersive event that includes percussion, acrobatics, dance and new technology. It

was curated by Fabrice Marandola and organized in collaboration between Le Vivier (Le Vivier

2018) and CIRMMT (CIRMMT 2018).

Our work was also selected to participate in many other events, such as concerts, art exhibitions

and synthesizer trade shows, some of which we were unable to attend considering the scope and

financial constraints of the project.

6.1.5 Conclusions

Our dissemination activities have included academic contributions in the form of publications and

presentations in conferences, but also the participation in public events related to electronic music

and special interest groups. Prynth was also covered in reputable press articles and social media.

We believe in the value of offering our framework to a larger community of artists and instru-

ment developers, something that can only happen with a significant effort in good documentation,

quality control and promotional activities. The result was the fast growth of a community of users

that recognizes value in the technologies, concepts and technical implementation behind Prynth.

6.2 Instruments Built with Prynth

The construction of a DMI involves not only technical but also creative challenges. With an

infrastructure like Prynth and the flexibility of SuperCollider, one could build many kinds of

instruments, from handheld to tabletop instruments, small processing pedals or large size sound

art installations. Paraphrasing Williams, the writer from Hackaday, the only limit would be one’s

imagination.

We asked our users to share their experiences with Prynth, by documenting and showing their

6.2 Instruments Built with Prynth 141

creations, and reporting bugs or any other difficulties in our public discussion channels. Although

we know that most users will prefer not to engage in public discussion, there is still a relevant

number that do contribute. We are grateful to those people because their feedback is crucial to

our research.

In this section we present a small selection of instruments built with Prynth. One of those

instruments was built by the author but the remainder by other users, a few of them colleagues

at McGill University. Our pool for this selection was somewhat limited because we needed direct

access to the creators. We also had to make sure that there was good quality documentation

for each case, leaving behind many other interesting projects that unfortunately do not. Still,

we think this selection fulfills the goal of exposing the diversity of instruments made possible by

Prynth, as well as the different motivations and artistic visions behind them.

6.2.1 The Mitt

Hardware Description

The Mitt is a tabletop instrument played using micro hand gestures. It uses 5 small thumb

joysticks, spatially distributed to follow the morphology of the hand, so that each joystick can

naturally rest under one of the five fingers. Below the joysticks there is a series of 5 buttons that

follow the same spatial distribution pattern and that are accessed by slightly retracting the fingers

to a more inward position. Above the joysticks, there is a matrix of controls with 4 rows and 5

columns. The first row and column are populated with buttons and the remainder with rotary

potentiometers. On the lower corner of the device there are two additional buttons. The most

common way to play the Mitt is to use one hand to control the joysticks, while the other is free

to manipulate synthesis parameters on the control matrix.

The controls are mounted on the top panel of the instrument’s quadrangular case, which has

a height of 20 cm and a top surface area of 60 x 90 cm. On the backside of the device there is a

series of connectors: stereo 1/4” TRS audio outputs, a USB 2.0 type B power connector, Ethernet

and a 5-pin DIN MIDI output.

142 Results

Fig. 6.1 The Mitt.

The thumb joysticks on the Mitt are appropriate for capturing micro-gestures. They are found

in many game controllers, an application that requires precise tracking of small finger movements.

This type of micro analog joysticks has been in the market since the ’80s and they all follow the

same basic design. The vertical shaft of the joystick travels inside the crossing of two internal

slotted shafts. Moving the joystick up or down will move the horizontal shaft, while moving it

left and right will move the vertical shaft. These shafts transform the joystick’s angular motion

into a combination of the rotation of these two perpendicular shafts, which in turn are connected

to two analog rotary potentiometers. Because these are analog joysticks, they can be sampled at

any desired speed and resolution. The vertical shaft of the joystick measures 25 mm and bends 45

degrees end-to-end. With the 12-bit ADC resolution of the Teensy, we have a theoretical precision

of 0.01 degrees, which can also be expressed as an arc travel of about 0.005 mm. These joysticks

also have an inner spring that once released automatically retracts the shaft to a central position.

This resting position is equivalent to half the travel of each potentiometer, so there is no central

dead spot, a problem commonly found in other types of joystick designs.

6.2 Instruments Built with Prynth 143

Fig. 6.2 Backside connectors of the Mitt.

Synthesis and Mapping

We tested many different synthesis and mapping schemes with the Mitt, but our preferred was

a 5-channel granular synth, each voice combined with a low-pass filter and controlled by simple

one-to-one mappings. The corresponding SuperCollider SynthDef is instantiated for each of the 5

channels. It incorporates both the stereo granular synthesizer and the low-pass filter and provides

the following control parameters:

• Trigger gate

• Playback rate (pitch)

• Relative position of the play head

• Grain triggering rate

• Grain duration

• Sample number

• Filter cutoff frequency

144 Results

The mapping is also similar for each of the 5 channels. First we transform the cartesian

coordinates of each joystick into polar coordinates. We then map each joystick, so that pushing it

away from the central position triggers the gate of the amplitude envelope, while the angle controls

the position of the playhead. A circular motion of the joystick will result in a scrubbing effect,

which can be used to modulate timbre according to the variations in the original sample. Moving

the joystick back to a central position will trigger the release stage of the envelope. The threshold

of the envelope trigger corresponds to a very small radius, so that the remainder of the amplitude

can continue to be used to modulate the sustain level. To increase the dynamics of the resulting

granular textures, we’ve added a small random jitter to the playback position using interpolated

noise.

The buttons next to the joysticks change the sample in the buffer, cycling through an array

of pre-chosen sound files for each channel. The buttons on the top of the vertical strips are

used to lock the joystick position, so that a particular channel may sustain indefinitely, even if

the joystick is physically released. The first potentiometer from the top is mapped to density, a

meta-parameter that, when increased, reduces the grain duration but increases the grain trigger

rate and the frequency of the playhead modulating noise. A high density tends to produce more

static timbres, while a low density produces more variation. The second potentiometer controls

pitch, with the note values converted to the corresponding playback rates. These pitches can be

quantized to a particular scale and over any determined number of octaves. Finally, the third

potentiometer controls the cutoff frequency of the low-pass filter, affecting the brightness of the

sound by reducing its high frequency content.

Musicality

One interesting aspect of the Mitt is the exploration of micro-gestural control. The performer’s

gestures are amplified to the extreme, so that a very small movement of a finger can have a

dramatic impact on the resulting sound. This results in a very dynamic instrument, where the

performer can easily shift from an extremely controlled and subtle modulation to a major variation

6.2 Instruments Built with Prynth 145

in timbre and amplitude.

For our live performances, we use a pair of Mitts, one for each hand. The left Mitt is the exact

mirror image of the right one. The only difference is that we’ve removed the springs from the left

unit, so that the joysticks can rest in their set positions without the need to lock the envelopes

with the upper buttons.

Our performances could be broadly categorized as glitch music, with sustaining drones played

with the left Mitt and more percussive sounds played with the right.

Concerts

We have performed the Mitt in several concerts, both solo and in ensembles with other musicians.

• Solstice 17—Solstice 17 was the closing event for the 2017 edition of the Montreal festi-

val Printemps Numérique (Printemps Numérique 2018). Organized in collaboration with

MusicMotion and the Société des Arts Technologiques (SAT 2018), this multidisciplinar

event included interactive installations, theater and music. We participated on an ensemble,

together with the Musallica (Musallica 2018) soprano quartet and percussionist Lionel Kiz-

aba (Kizaba 2018), to create a structured musical improvisation for the performance of the

interactive theater group Prism (PRISM 2018).

• Beat Dox: D+M—this event was part of the Doc Circuit Montréal (RIDM 2018), a film

documentary festival that takes place yearly at the Cinémathèque Québécoise in Montreal.

We were invited, together with two other artists, to perform live music for the screening of

the documentary “La Pesca”, by directors Pablo Alvarez Mesa and Fernando López Escrivá.

The documentary was played three times in a row, with each performer offering their own

live musical interpretation. For this concert we prepared an algorithm for the Mitt to play

music based on the principles of serialism and inspired by the minimal music of composers

like Steve Reich and Phillip Glass. The performance consisted on conducting the algorithm,

which autonomously generated pitch, rhythm and articulation. This was a good exercise

146 Results

of creating a rule-based performance for the Mitt, rather than the skill-based performances

that we tend to prefer (see section 2.4). After the concert we were asked to participate in an

artist talk to explain the Mitt and how the music had been created. We were congratulated

by several of the audience members that praised the project and the initiative of giving

others the possibility of building similar instruments.

• Improv@CIRMMT—these concert cycles dedicated to musical improvisation take place at

the Café Ressonance in Montreal and are organized by Olfer Peltz and CIRMMT. In 2017 we

constituted an improvisational trio, together with Eric Lewis on trumpet and Juan Sebastian

Delgado on cello. The Mitt was used to create a soundscape on top of which Lewis and

Delgado could develop a tonal dialog between their instruments.

• DIY Mash Up—part of the live@CIRMMT programming of 2018, DIY Mash Up was a

concert dedicated to musicians that develop their own instruments. We participated together

with OrkID, IDMIL’s own DMI ensemble, featuring also Ajin Tom, Harish Venkatesan,

Travis West and Tiffany Matraxia. The event also counted with the special participation

of Jean-François Laporte, an accomplished electronic musician from Québec, who joined in

improvisations with the various ensembles of the evening.

Guthman Musical Instrument Competition

In 2017 the Mitt was selected for the final stages of the prestigious Margaret Guthman New

Musical Instrument Competition (Guthman Musical Instrument Competition 2018), created by

Georgia Tech alumni Richard Guthman in honor of his wife. The first editions of this competition

were dedicated to piano performance, but in 2009 it changed its focus to showcasing the best new

instruments created worldwide. Every year, during two days, 20 semi-finalists present their cre-

ations and perform live for audiences and judges, who have included experts such as Pat Metheny,

Laurie Anderson, David Wessel, Tod Machover, David Zicarelli or Tom Oberheim. Although the

Mitt was not selected for the grand finals of the competition, it was still recognized as one of the

6.2 Instruments Built with Prynth 147

top instruments of 2017, which we consider to be a great honor and achievement.

6.2.2 Noiseboxes

Noiseboxes (Sullivan 2015) are a series of portable handheld digital musical instruments designed

by John Sullivan. The first versions of these instruments were originally built using plain PD

on the Raspberry Pi, but the author later moved to Prynth for the development of the following

iterations. The most interesting aspect of these instruments is the inclusion of batteries and

speakers, making the Noiseboxes completely autonomous and playable anywhere and at any time.

“The stand-alone format means that there is no need for cables, connections or

configuration of any kind. An internal rechargeable battery and onboard speakers

makes them ready to play whenever and wherever inspiration strikes,” said Sullivan.

Fig. 6.3 The Noiseboxes.

The Noiseboxes use an FM synthesis engine with 8 voices to create simple harmonic tones or

chaotic noises that can be sustained and layered on top of each other. The controls of the instru-

ment include buttons, knobs and a positional sensor that can be mapped to voice selection, pitch

and effect parameters. The instruments also include an accelerometer to modulate parameters by

holding and tilting the whole instrument.

148 Results

These instruments were used in a series of experiments that Sullivan conducted for his research

on the factors that influence the adoption of DMIs. In these experiments, several units of the

Noiseboxes were lent to musicians, who could take them home, learn to play them and later report

their findings.

6.2.3 SONIO Soundboard

SONIO Soundboard is a musical interactive table developed by Tim Kong, Karen Cancino, Alanna

Ho and Marc St. Pierre. It is composed of 52 capacitive touch sensors, distributed in a grid pattern

along the surface of a table. The contact points are spaced close enough so that a young child

may trigger 4 to 6 simultaneous points with the palm of the hand. Each point triggers a different

FM synthesis voice and the table is large enough to accommodate up to 4 players. It also includes

visual feedback, in the form of RGB led strips embedded along the sides of the table.

“Participants described the board as having a ‘futuristic’ feel, where the overall

theme, sound and visuals were inspired by science fiction movies like Star Wars and

Close Encounters of the Third Kind”, said the authors.

The SONIO Soundboard is an interesting example of how Prynth can be used in interactive

devices for contexts other than live performance. It was developed for exploratory edutainment,

inviting the general public to an interactive experience that lets them discover electronic music in

an engaging and playful way.

Marc St. Pierre further describes the public exhibition of the SONIO Soundboard:

“SONIO was presented at two publicly accessible events over a period of a few

months. The first was titled InFlux which was hosted at the Surrey Art Gallery in

Surrey, BC. There was probably a couple hundred people who attended the event. In-

Flux highlighted local community groups and artists by providing a venue to showcase

their creative work. This was an annual event in its third year.

6.2 Instruments Built with Prynth 149

Fig. 6.4 SONIO Soundboard and its construction.

The second event was the Vancouver Mini Maker Faire 2017, in which several

thousand people were estimated to have attended. The event ran over 3 days and

SONIO was a central part of our display. It was popular with both kids and adults,

some of whom returned several times, bringing new people with them to try out the

installation”.

Interactive devices for public entertainment have different requirements than those designed

for personal use. They must be extremely resilient to withstand the abuse of hundreds of people

that are not aware or concerned with the sometimes fragile nature of these implementations. Most

of the times they are also simpler but they still cannot malfunction or have any sort of inconsistent

behavior. Otherwise they will quickly fall into discredit given the short attention span of the public

150 Results

in these contexts. With the SONIO Soundboard, Prynth has proven to be a reliable and stable

solution for these demanding use cases.

Another interesting aspect of the development of the SONIO Soundboard is that the develop-

ment team adapted the Prynth PCB designs into a format that better suited their application.

The PCBs were handmade using perfboards, in order to slot the Muxi boards directly onto the

Control board. We encourage this type of modification of Prynth’s initial design so it can better

adapt to specific use cases.

6.2.4 Modular Synths

There are two interesting applications of Prynth in modular synthesizers. The first is called RR,

developed by Daniel Górny. It is a tabletop semi-modular, where Prynth’s signal acquisition system

was modified to allow input of analog control voltages. The instrument has 15 potentiometers,

5 control voltage inputs and a 7 x 7 patching matrix, modeled after rePatcher (Open Music Labs

Wiki 2018), a similar system but for the Arduino platform. Górny told us that he plans to continue

the development of RR by creating an OSCdef that responds to CV inputs, a preset system for

recalling the potentiometer values and adding a potentiometer to continuously transition between

said presets.

More recently, another user has sent us a report of using Prynth together with Terminal Te-

dium (Mxmxmx 2018), an open-source eurorack module based on the Raspberry Pi. He described

his experience with Prynth and Terminal Tedium in detail:

“I’m very impressed with the Prynth project and having a lot of fun learning Su-

percollider with it. I’m running Prynth on a eurorack module called Terminal Tedium.

The Terminal Tedium has stereo audio codec in/out, several digital inputs and

outputs, six pots and three switches. It hosts a Raspberry Pi as its compute engine—

I’m using a Pi 3. The module was intended for running Pure Data but I’ve had good

results with Csound and now Prynth. I started with the Prynth 0.5 image and ran the

Terminal Tedium install script which configures the WM8731 audio codec driver and

6.2 Instruments Built with Prynth 151

Fig. 6.5 RR semi-modular.

installs Pure Data (which I don’t use). Prynth found the WM8731 sound device and

required no other configuration. The Terminal Tedium install includes source code for

a basic OSC client which I modified a bit to make it work better with Prynth. I added

a command to /etc/rc.local to start the OSC client on boot up.

This setup works really well. I can read the digital inputs and the pots via OS-

Cdefs. So far I’ve programmed a couple of simple voltage controlled oscillators, a

drum machine, reverb and echo effects and a very nifty looped sample player. It’s by

far the most flexible module in my eurorack setup. My thanks to Ivan and the team

for creating such a great project”!

6.2.5 FlexPrynth

FlexPrynth is an instrument built by Harish Venkatesan and Ajin Tom, two of Prynth’s collab-

orators. The motivation for the construction of this DMI was that Venkatesan and Tom wanted

to assess the feasibility of taking an existing instrument, the Sponge by Martin Marier (Marier

152 Results

2018), and reconstruct it introducing newer technologies and features to the original design. Their

interest lies in understanding how to preserve and recreate DMIs, since most of these instruments

are not available in the long-term. On his website, Marier provides a set of instructions on how

to recreate the original Sponge. It seems only natural that the public would take this design and

reinterpret it, creating new versions that slightly deviate from the original design, especially if the

original materials are no longer available. This happens oftentimes with DMIs. Instruments like

the T-Stick (Malloch and Wanderley 2007) or Michel Waisvisz’s the Hands (Torre et al. 2016)

have had many different versions with improved technologies and new functionalities. Venkatesan

and Tom also wanted to test if an embedded system and a ready-to-use framework like Prynth

would effectively facilitate the development and usability of this DMI, as opposed to building it

from scratch and using the traditional DMI model of a controller and computer.

The original Sponge is a controller made of a flexible foam block. It is played by bending,

twisting and striking its malleable structure. The mechanical deformation is captured by a pair

of accelerometers slotted inside each extremity of the foam block. On the underside, a series of

button clusters are used to trigger different notes and states of the instrument. The control data

is sent via RF transceivers to a computer running SuperCollider.

FlexPrynth uses the same principles but introduces pressure sensors inside the foam. Pressure

sensitivity adds squeezing as a new musical gesture, one that is naturally favored by the sponge.

In one design, a small wood popsicle stick works as a lever that sits on top of two pressure sensors.

Pushing it upwards or downwards has an effect similar to that of a relative position slider.

Two new versions of the Sponge were built. The first was a controller, closer to Marier’s

architecture, and the second was a self-contained version using Prynth. After the construction

of the two versions, the creators referred to the much easier implementation using a higher-level

framework like Prynth:

“The roots of the challenges [of version 1] can be traced majorly to the fact that

there were many sub-systems that were independent of each other with little coherency

[sic], forcing the developer to spend great amounts of effort in building concrete links

6.2 Instruments Built with Prynth 153

between them ... The Prynth framework helped in overcoming a lot of hassle faced in

building version 1”.

They also referred to the ease-of-use and immediacy of a self-contained instrument versus its

controller/computer combo counterpart:

“The setup time [of version 2] is far less compared to version 1 ... version 2 is

a self-contained DMI and it requires little to no set up time to get it running. One

would only have to plug in the power supply and wait for the system to boot to

performance state. On the other hand, the setup for version 1 involves setting up

Bluetooth communication, loading mappings on libmapper, setting up a DAW with

virtual instruments and routing MIDI and audio buses, which is time consuming”.

Fig. 6.6 FlexPrynth versions 2 and 3.

On the other hand, a self-contained design also brought challenges to an instrument like the

Sponge. Venkatesan and Tom talk about the large size of the Prynth hardware module when

compared to the smaller microcontroller of version 1.

“This module, in comparison with that of the version 1, is bulky which means that

in order to accommodate the Prynth hardware on the body of the instrument itself,

the foam had to be considerably larger than version 1”.

154 Results

The larger Prynth hardware creates some limitations to FlexPrynth. It cannot be embedded

directly inside the instrument and restricts the malleability of the foam. For these reasons, a third

version was built, in which the Teensy was decoupled from the Raspberry Pi and connected with

a cable. The Raspberry Pi can then be mounted around the waist, a solution similar to STEIM’s

SensorLab used by Waisvisz in the Hands.

6.2.6 GuitarAMI

GuitarAMI (Meneses et al. 2018), developed by Eduardo Meneses, is an example of an augmented

musical instrument (AMI) using Prynth. The concept behind instrument augmentation is to take

an existing instrument, such as a guitar or a violin, and use an electronic system to extend its

palette of gestures and sonic possibilities. Technology-wise, an AMI works very similarly to a DMI:

sensors are applied to the instrument’s body and connected to a computer to control real-time

DSP software. Augmented instruments use microphones (a form of sensor) to capture the acoustic

sound of the instrument and apply many different effects to the source material.

The early versions of GuitarAMI were composed of a sensor module, a controller in the form

of a guitar pedal, an audio interface and the computer. The sensor module is a small box with an

accelerometer and a proximity sensor, which is mounted on the body of the guitar and connected

to the pedal controller with a cable (later made wireless in a subsequent version). The guitar

controller has several foot switches and an LCD. Inside, an Arduino performs signal acquisition of

the sensors and sends the data to the computer, which runs PD with DSP like spectral freezing,

FM modulation, looping and time-stretching. In some version of GuitarAMI, a conventional effects

processor was added for more common effects like distortion, delay, reverb and wah-wah.

Using Prynth, the new version of the GuitarAMI discards the computer and the external audio

interface, to have all of these functionalities integrated into a single pedal unit. All of the PD

patches were successfully ported to SuperCollider, achieving the same functionality of previous

versions in a much more integrated and robust package.

Another interesting derivative of the GuitarAMI project is that the processing unit (the pedal)

6.2 Instruments Built with Prynth 155

Fig. 6.7 The new GuitarAMI using Prynth.

was developed so that it can receive wireless signals from many other controllers. As an example,

Meneses created a program to receive messages from the T-Stick (Malloch and Wanderley 2007),

one of IDMIL’s most emblematic controllers. With this general purpose processing unit, IDMIL’s

controllers can be demonstrated at any time, without the need for dedicated computer systems or

elaborate setups.

6.2.7 Conclusions

In this chapter we have described some examples of instruments made with Prynth. We consider

these to be our most important results, from which we can learn how the framework is being used

and the different approaches of developers towards the design of their own embedded DMIs.

The Mitt is concentrated on exploring new forms of musical control, through its emphasis on

the micro-gestures. The Noiseboxes differentiate themselves by focusing on the full autonomy of

the instrument and the ability to play it anytime and anywhere. The SONIO Sounboard aims at

being a multiuser social experience, manifested in the form of a hybrid between an instrument and

an interactive installation, designed to be played by anyone. RR, GuitarAMI and FlexPrynth use

more traditional models but augment their usability through a more integrated design.

A development framework like Prynth works as a white canvas for DMI development. It allows

156 Results

users to create instruments that reflect their personal interests and artistic goals. We have gathered

a group of examples that reflects this diversity, concluding that Prynth responds well to a wide

spectrum of use cases.

157

Chapter 7

Discussion

7.1 A New Generation of DMIs

The model for embedded DMIs proposed in Prynth is influenced by three major factors. The first

is a cultural factor, which relates to the increasing presence of computers in our everyday lives and

the sophistication of a new generation of users. The second is a conceptual factor, which draws

from the understanding that future computers will assume many different forms so they can better

fit specialized activities. The third is a technical factor, which relates to the new technologies that

enable embedded DMIs.

7.1.1 The Cultural Push

Computers keep getting more sophisticated but so do their users. The computer training offered

in schools a few years ago was limited to the use of basic software, such as word processors or

spreadsheets. Today, youngsters are taught how to program computers, so they can use them more

efficiently to solve complicated tasks. Programming has become an essential skill to any engineer or

scientist, but even software for accounting or visual art is starting to include scripting capabilities

and offer further control to power users. We are seeing the same exact tendency with electronics.

Components are freely available to the public and custom circuit boards can be manufactured in

158 Discussion

low quantities. We are continuously expanding the meaning of being a technology user.

This deeper engagement with technology is also present in music applications. They offer

increasing levels of control and allow for deep customization. For centuries, musicians have invented

new playing techniques or created personalized setups to produce the sound palettes that became

staples to their artistic entities. It is no different with computers. There is a growing interest in

the creation of custom instruments for live performance of computer music.

Audio programming tools like Max have been around for a long time now, but their user base

is still growing. The integration of Max with the Ableton Live DAW (Ableton 2018) is the proof

that musicians also want to tap into these advanced capabilities and that they are invested in

learning them. We think that the audience for a framework like Prynth is not as small as one

might think. Some of our users reported that Prynth got them started in instrument building and

the learning of SuperCollider. The construction of custom DMIs is on the cusp of becoming a

common practice, so there is a clear need for more frameworks like Prynth.

7.1.2 The Conceptual Push

From a conceptual perspective, embedded DMIs could represent the norm for future electronic

music instruments. In the same way that mobile phones gained more flexibility and intelligent

behavior from the inclusion of computers, so should electronic music instruments. Embedded

DMIs have the possibility of embodying the notion of smart musical objects.

The concept of smart objects can be traced back to the original ideas of the forefathers of ubiq-

uitous and physical computing. In his 1991 article, "The Computer for the 21st Century" (Weiser

1991), Mark Weiser alludes to the future possibilities of smaller contextually-aware computers,

with designs optimized for specialized tasks. Weiser’s vision has now become a reality. We inter-

act daily with many more computing devices: smartphones, tablets, watches, biological monitors

and smart appliances. They all have different form factors and fulfill specialized functions. We

also interact very differently with these computers. We touch them, talk to them and can even

interact via emotional expressions or physiological signals. Software tracks our daily patterns and

7.1 A New Generation of DMIs 159

dynamically adapts to our preferences and context of use. Weiser set out to rethink the role of

computers in quotidian life and soon realized they would become essential to our future society.

The problem was that computers would have to change too.

"The computer nonetheless remains largely in a world of its own. It is approachable

only through complex jargon that has nothing to do with the tasks for which people use

computers ... We are therefore trying to conceive a new way of thinking about comput-

ers, one that takes into account the human world and allows the computers themselves

to vanish into the background. Such disappearance is a fundamental consequence not

of technology but of human psychology. Whenever people learn something sufficiently

well, they cease to be aware of it ... Only when things disappear in this way are we

freed to use them without thinking and so to focus beyond them on new goals" (Weiser

1991).

This vision aligns with our concept for embedded DMIs. They are interactive objects geared

specifically towards the activity of music making. The computer that was once required disappears

from the desk and is now incorporated into the instrument itself. Embedded DMIs constitute a

sort of new hybrid category between a hardware synthesizer and a computer. They are completely

self-contained but can still be programmed with different DSP or interactive behaviors.

7.1.3 The Technical Push

Until recently only desktop and laptop computers with x86 processors had enough computing

power for DMIs. This is no longer true. In the last years, embedded processors evolved to a

point where they defy traditional computers in raw processing power. The latest iPad tablets

can run applications that have the same functionality of the professional software used in musical

productions of a decade ago. The mobile market is flooded with music applications that simulate

acoustic instruments, pedal boards, synthesizers and sequencers. Musicians have gladly embraced

mobile computing devices, which are simpler to operate and can run the most complex audio tasks.

160 Discussion

Traditional computers are also defied by the increasing amount of applications that use cloud

computing, an architecture where all of the heavy processing is done using remote servers. Some

cloud computing products use specialized client applications but the tendency is to use a simple

web browser. A good example of cloud computing is Google Docs, an office suite that resembles

the previously indispensable Microsoft Office, but now working entirely on the cloud. Many other

applications, from CAD software to videoconferencing have also moved to cloud computing. One

of the advantages of this model is that there is no need for a powerful local computer or the use

of specialized software. Almost any device with a web browser can be used to interact with these

applications.

In this scenario traditional computers become obsolete and Prynth follows these same techno-

logical trends. It takes advantage of the new generation of embedded processors and conducts all

computer-like interactions via thin client.

7.1.4 Conclusions

Prynth is the result of the alignment of groundbreaking cultural, conceptual and technological

factors. We have a new generation of users that is considerably more tech-savvy and ready

to accept the technological trends that will shape the way we understand computers and their

quotidian use.

Artists have always been early adopters of technology because it allows them to keep pushing

forward new forms of expression. Likewise, since the inception of personal computers, musicians

have continuously found new ways of using them creatively. The use of DMIs is stronger than ever

and so is the pursuit for more advanced solutions.

7.2 Overcoming the Limitations of Traditional DMIs

Any seasoned DMI performer would recognize the limitations of DMIs identified on chapter 3.

Fortunately, embedded DMIs might hold solutions to solving many of them.

7.2 Overcoming the Limitations of Traditional DMIs 161

7.2.1 Embodiment

First we talked about the lack of embodiment of DMIs and how it derives from the fragmented

nature of the controller/computer combo. Many people still prefer hardware synthesizers over

computers because they are designed specifically for music. Hardware synthesizers behave like all

the other devices of the music studio: they have a single function but can also be combined with

other devices in a myriad of ways. This direct association between musical tasks and the objects

to accomplish them seems to be of extreme importance to musicians. The computer offers virtual

simulations of these interactions, but on top of an abstract and general-purpose machine that does

not have any tangible affordances directly related to music. On the other hand, embedded DMIs

have the possibility of becoming integral interactive objects, promoting dedicated functionality

and a more direct correlation between task and tool, while maintaining many of the traits and

advantages of computers in music.

7.2.2 Cognitive Activities

The computer is a rule-based system with a significant number of procedures and abstractions.

It requires functional reasoning, which starts with a clear goal and ends in the series of complex

chained operations required to accomplish it. Most DMIs cannot circumvent these cognitive ac-

tivities, which are very different from the embodied interaction with a musical instrument. The

computer is still at the heart of the DMI, even if only for the user.

Prynth still requires some computer-like activities but they are much more focused on the

functional operation of a DMI. There is no direct interaction with an operating system and musical

thinking is put in the forefront, by adopting a domain-specific language like SuperCollider and

offering an easy path to the integration of physical and virtual control. In any case, these activities

are only required during the development and testing of an instrument. In daily usage, it becomes

predominantly a skill-based interactive device.

162 Discussion

7.2.3 Immediacy

The computer lacks the determinism that many people expect from a dependable musical instru-

ment: a tool that can be picked up at any time and immediately used for musical expression

with consistent results. Although not completely instantaneous, Prynth instruments take only a

few seconds to become operable, without the need for extraneous connections or intensive user

intervention. In our many years of experience with DMIs, we have never had any instrument with

an easier or faster setup time. In our concerts with the Mitt we were proud to finish our setups

much earlier than our colleagues, while they dabbled in layers of technical issues and unexpected

behaviors. This property of immediacy may seem like a small feature to those who have learned

to live with the complexity of their DMI setups, but once experienced it considerably changes

expectations.

7.2.4 Reliability and Longevity

Finally, there is little doubt that embedded computing could be key to better resilience, stability

and durability of DMIs. Only a test of time can truly confirm it but it is relatively safe to

speculate that a computer dedicated to a single task, with no moving parts and shielded from

harsh environments will be sturdier and exhibit a more consistent and enduring performance.

We can at least confirm some level of reliability in Prynth, based on our experience with the

instruments we built during the past three years. Besides two sensors that had to be substituted

in a particular unit of the Mitt due to normal wear and tear, we have not observed any other

noticeable issues. If anything, the weakest point of the single-board computers used in Prynth

is the memory card. It has a limited number of read/write cycles and the operating system can

become corrupted if the power supply is lost during critical disk operations. At the same time,

and assuming frequent backups, the memory card is also the easiest and cheapest component to

replace.

7.3 Strengths and Weaknesses of Prynth 163

7.2.5 Conclusions

The use of standard computers in DMIs creates problems that stem from the purely technological

to those related to design and usability. Embedded computing might help solve some of those

problems. Prynth employs several strategies to make DMIs behave in ways that are closer to stan-

dalone instruments, which are still preferred by many musicians because they are more immediate,

reliable and focused on musical activities.

But to say that embedded DMIs completely solve these problems would constitute a bold

claim; one we cannot entirely prove at this point. We would need more in-depth psychology and

usability studies to better understand the relationships between musicians and their instruments.

Only then can we confidently refine our models and frameworks. Still, we recognize signs that we

are in the right path and that embedded DMIs are a glimpse into a possible solution.

7.3 Strengths and Weaknesses of Prynth

Software and hardware development frameworks facilitate the implementation of technological

products but they also impose their own workflows and rules of operation. They are necessarily

full of compromises. Therefore, it is relevant to analyze the implications of those trade-offs and

how they translate into strengths and weaknesses of Prynth.

7.3.1 Strengths

Target user level

In most of the products and frameworks we reviewed, highly flexible tools tend to be more complex.

On the other hand, they have lesser constraints and are applicable to a wider variety of use cases.

In Prynth we tried to find an optimal balance between flexibility and complexity, but we must not

forget that building a musical instrument is in itself an ambitious proposition.

Still, we made every effort to reduce complexity. Prynth requires only basic soldering and

offers an easy way to implement tangible interfaces. Its software is distributed as a ready-to-

164 Discussion

use Linux system, completely preconfigured and easy to install on a memory card. After the base

system assemblage, which does not involve any other low-level implementation or direct interaction

with Linux, the only remaining task is to connect sensors and program musical functions in

SuperCollider.

If we were to establish the profile of a Prynth user, we would say that it is at least essential to

have some basic experience with soldering and programming. That said, Prynth is free, uses rela-

tively cheap components and a well-known programming language with many learning resources.

These factors might be enticing enough for novices that want to give their first steps into these

disciplines. Like previously referred, some Prynth users have reported success in building their

first ever DMIs. We have also received reports of several seasoned DMI developers that still found

great value in Prynth, so we trust the right balance between complexity and flexibility to be one

of its strengths.

Accessibility

In Prynth we have consciously refrained from using any exotic electronic components or creating

procedures that could not be easily followed at home. Sometimes even expert users have difficulties

soldering surface mount components or simply do not have access to the right tools. Prynth uses

only through-hole components that can be assembled using basic hand tools. These components

are also easily acquired in any hobbyist electronics store and they have a very low probability of

ever being discontinued by manufacturers. While the base system could have a much more ad-

vanced and compact architecture, the success of Prynth depends on this level of self-sustainability.

Furthermore, we do not wish to sell components or preassembled electronics boards and trans-

form Prynth into a business. All the contrary. By making sure that components are simple and

easily sourced, we can better guarantee user adoption and a continued improvement in a logic of

open-source tools and knowledge.

7.3 Strengths and Weaknesses of Prynth 165

Modular architecture and standards

We have also made an effort to decouple many of the components that constitute Prynth. Instead

of a monolithic application, Prynth is composed of many small applications that intercommunicate.

Sometimes modular architectures have lower performance than highly integrated ones, but we trust

that in our case there is a big advantage to this decentralization strategy. Some of the instruments

built with Prynth show that by having a modular architecture, the user can decide to intersect

communication protocols or substitute modules that better serve a particular implementation.

This is the case with instruments like the SONIO Soundboard and FlexPrynth, in which it was

important to modify functions of the signal acquisition subsystem. Instruments like the Terminal

Tedium eurorack module have taken the opposite path, by discarding our electronics and using

only the Prynth server and its integration with SuperCollider and Linux. The heavy reliance

on standard protocols for internal messaging (OSC and HTTP) also opens up the possibility for

building custom control layers. This level of modularity is beneficial for more experienced users,

who can modify Prynth to better fit their goals.

Raspberry Pi

In the same way we have chosen to work with standard electronics components, we have also

chosen the Raspberry Pi because it is the most widely available and popular SBC in the market.

There are many other types of single-board computers, some of which with better specifications.

The problem is that most of them share the risk of sudden discontinuation or lack of availability in

the market. We previously referred that in the beginning of our research we used the BeagleBone

Black. We decided to switch to the Raspberry Pi after the announcement that Texas Instruments

had no intention of continuing to invest in the development of the SOCs used in the BeagleBone

Black and that it would eventually abandon production. These news raised all the necessary red

flags for us to move to the Raspberry Pi, which has since seen three processor updates, while the

BeagleBone remained on the same processors it has used for several years. While we still have

166 Discussion

no control over the future of the Raspberry Pi, we at least know that it has better chances of a

long-term availability. In the case it does become unavailable, we are still capable of easily porting

Prynth to other SBCs, due to our low dependence on any distinctive features of the Raspberry Pi.

SuperCollider

SuperCollider is the ideal programming language for Prynth. It is a proven and mature language,

designed specifically for music and with a vast DSP library. Most importantly, SuperCollider is de-

signed for interactive programming, a feature we have preserved in Prynth and that differentiates it

from all other frameworks for embedded DMIs. Prynth allows the programming of the instrument

to be as interactive as playing it. Mapping and synthesis programs can be changed on-the-fly,

without the need for compilation stages, which greatly facilitates modification and fine-tuning. A

Prynth DMI could even be live coded, an unexpected feature in a self-contained instrument.

Web technologies

Prynth is also tightly integrated with modern web technologies, allowing the instrument to be

programmed from any standard web browser. Most other systems use local applications to program

them. Those applications rarely run on multiple platforms and can quickly become obsolete,

rendering the DMI unusable. They also require installation on a dedicated personal computer,

which the performer will need to access at all times. In essence, any proprietary software will

increase the dependence on a particular computer. On the other hand, Prynth can be programmed

and configured from any available computer, tablet or smartphone.

7.3.2 Weaknesses

Performance

Although the computing power of ARM processors is catching up with x86 processors, the latter

still exhibit better performance. We have proven that ARM processors can run relatively complex

audio synthesis (Franco and Wanderley 2015) in the context of DMIs, but it is comprehensible

7.3 Strengths and Weaknesses of Prynth 167

that a user migrating from regular computers could stumble into limitations that were not a

preoccupation before. In those cases, DSP algorithms may need to be simplified, reducing the

number of possible voices or post-processing effects. Latency may also increase with larger vector

sizes, to compensate for the reduction in processing power. Maybe in the near future, with the

fast-paced progress of ARM processors, these differences will become less pronounced, but for now

they still exist.

Audio quality

Audio quality may face similar limitations. The audio cards available to systems like Prynth are

generally of lower quality than the ones available for desktop and laptop computers. Many of them

have lower signal-to-noise ratios, reduced spectral bandwidth, smaller bit depths and sometimes

poor pre-amplification stages. Even if consumers were willing to pay higher prices for quality audio

cards for the Raspberry Pi, other limitations would still come into play, such as power consumption

and dimensions. Compromises in audio quality are acceptable to some users but problematic to

others. In either case, the computer market still has many more options than those available to

single-board computers.

User familiarity

Although we argue that standard computers are detrimental for the user experience of a DMI,

we must still take into account that they have been extensively used in music for many years

now. There are already many strongly established methods and tools. Like previously mentioned,

Prynth imposes its own set of procedures, which might not fit the workflows of all DMI users.

Someone who is highly invested in applications or programming languages that only run on regular

computers might be less likely to migrate to Prynth.

168 Discussion

Headless operation

Regular computers rely strongly on visual feedback. Dataflow programming languages like Max or

PD are good examples of systems that have a great number of adepts but that strictly depend on

visual information. Those types of representations might be paramount to some users. The success

of dataflow programming languages among musicians might be due to the fact that they use an

abstraction that is familiar to musicians: the connection of cables between functional objects.

Users that are very accustomed to such types of representations might feel discouraged or lost

when dealing with a system that incites textual programming and a headless operation.

7.3.3 Conclusions

Prynth aims at serving many use cases and finding a good balance between complexity and flexi-

bility. It is designed to be easily assembled using basic tools and has a modular architecture that

incites modification. It integrates modern technologies, like the Raspberry Pi and Node.js, and

couples them with SuperCollider, one of the most mature and feature-rich languages for computer

music. Prynth also has its share of disadvantages. ARM-based SBCs still can’t match the perfor-

mance and audio quality of regular computers. Prynth also proposes its own workflow for DMIs,

which might represent a barrier considering the diversity of possible methodologies and technical

approaches that can be used in DMIs.

7.4 Comparison with the State of the Art

In the state of the art (section 4.3), we have enumerated several DMI systems that use embedded

computing in one way or another. It is difficult to compare Prynth to many of them, given such

diversity in objectives, target audiences and technical implementations. That said, it is impossible

to avoid a comparison between Prynth, Bela and Satellite CCRMA. Both Bela and Prynth are

spiritual successors to Satellite CCMRA, which was the first system for the construction of SBC-

based DMIs to become publicly available. As an early effort Satellite CCRMA was a simpler

7.4 Comparison with the State of the Art 169

system, but it still doesn’t have the level of integration and advanced features that Bela and

Prynth have today.

At NIME 2015, when we first presented our results regarding the evaluation of the synthesis

performance of the BeagleBone Black (Franco and Wanderley 2015), the developers of Bela gave

their first workshop. At the time, Bela was not very different from Satellite CCRMA. In order

to configure and program it, the user had to go through a complex sequence of command line

operations and the transpilation of PD patches to C++ source code. At that time Prynth was

already in development and we decided to continue it, believing we could offer a system with

better usability: one where users could avoid the complexity of Linux and C++ (which we still

believe to be excessive for DMI development). In the end, Bela and Prynth were developed and

released within the exact same timeframes. The curiosity is that both systems wound up with

very similar features. Naturally they have their share of differences, but the main concept is still

the same. Both use a single-board computer with add-on circuitry and can be programmed using

a web-based IDE.

Without dwelling too much into direct comparisons between the two systems, Bela has a signif-

icant advantage in the low latencies it exhibits, due to the tight integration with the programmable

real-time unit of the BeagleBone Black. While this is certainly a very notable achievement, we

believe that the dependence on the BeagleBone represents a threat to Bela. The BeagleBone

will quickly become obsolete and it will be challenging to find an alternative SBC with a similar

programmable real-time unit.

The biggest advantage of Prynth over Bela is interactive programming. Although Bela can also

use SuperCollider programs, it is not capable of evaluating only portions of code and reproduce

the user experience of programming in SuperCollider. Bela still requires a traditional compilation

phase. After many years using all types of audio programming software, we are of the opinion

that the richness of the interactive programming in SuperCollider is yet to be well reproduced

by any other language. The best candidates are ChucK (Wang et al. 2003) and the more recent

Pyo (Bélanger 2018), but the development of the first seems to have decelerated in the past couple

170 Discussion

years and the latter is still somewhat in its infancy. On the other hand, SuperCollider has a strong

following, and being able to reproduce its stronger feature on a web-based front end of a DMI is

still one of Prynth’s most distinctive features.

The fact that Bela and Prynth have similar objectives and solutions, despite being developed

in parallel by two different teams, cross-validates the work of both and leads us to the conclusion

that there is a common understanding of the advantages and features that are important to any

framework for embedded DMIs.

7.5 Future Work

Future work on embedded DMIs should fall into three major categories: Prynth improvements,

users studies and trial of new interaction concepts.

7.5.1 Incremental Improvements

Prynth is an ongoing effort. There are still many aspects in which it can be incrementally improved.

To use a sensor signal in the SuperCollider language, the user must create an OSC responder for

each specific address. There is currently no way of specifying wildcards for hierarchical structures.

If we hypothetically imagine two sensor signals represented by the addresses /coordinates/x and

/coordinates/y, there is still no convenient way of writing only one OSCdef that responds to both

(/coordinates/*), so that x and y could be handled together within the same function. From

our understanding, this restriction is inherited directly from the OSC standard itself, but we are

interested in studying ways of circumventing it, making hierarchy handling of OSC messages easier

in Prynth.

There is also a chance for improvement of the Control board that hosts the Teensy microcon-

troller. The Teensy has breakout pins that are located on the underside of the microcontroller.

Prynth uses some of those pins for I2C and SPI communication. We have not found a definitive

way of making these pins easier to solder. Currently it requires the flowing of solder through

the pin holes (see section 5.6.1), which can significantly increase the difficulty of the assembly.

7.5 Future Work 171

We have used this method successfully several times but it would be important to find a better

strategy for novice users with less soldering experience.

We have chosen the Raspberry Pi 3 as the official SBC supported by Prynth, but there are

other interesting offers like the Raspberry Pi Zero and the Raspberry Pi Compute Module. The

Raspberry Pi Zero is a smaller SBC that discards some I/O components, such as the USB hub or the

Ethernet connector. The Compute Module is an even more condensed version, with the same form

factor of a DDR2 SODIMM and with just the BCM2837 SoC, RAM and an integrated embedded

multi-media controller (eMMC) flash memory. The reduced footprint of these alternatives is

beneficial in applications where the body of the instrument cannot accommodate the current

dimensions of the Prynth base system. These other RPis even suggest that Prynth electronics

could be reduced to a single integrated PCB, including onboard components like a DAC. We have

knowledge of at least two Prynth users that have tried to adapt Prynth to work on the Raspberry

Pi Zero, but those efforts were unsuccessful, apparently due to difficulties in the correct operation

of third-party software components like JACK. In the future we would like to officially support

these boards and offer the possibility of having Prynth work on even smaller and more integrated

hardware solutions.

The documentation of Prynth is in the form of cookbooks to help the user assemble the base

electronics system. Several users praised this format and were very satisfied with having a good

starting point to their own developments. Others have reported that they would prefer instructions

on how to build the entirety of an instrument like the Mitt. Initially we made a conscious decision

not to offer such instructions because we wanted Prynth users to build their own instruments

instead of simply replicating existing ones. Currently we are reconsidering it. If there were full

instructions from start to end, novice users would have at least one example to help them assemble

a fully operational instrument and eventually surpass any sense of disorientation and loss. Maybe

there is still space for improvement in Prynth’s documentation and training methodologies, so it

can better serve novice users.

172 Discussion

7.5.2 User Studies

We need to continue to improve our understanding of the motivations and habits of DMI users. We

think there is still significant work to be done in this area. Only then can we continue to enhance

frameworks like Prynth to better serve the community. At IDMIL, we have been collaborating

with John Sullivan, whose work is focused on these exact research topics. Together we conducted

a survey in which we inquired DMI users how they were using DMIs and in which contexts. The

results of this survey are yet to be published but we can advance that we have confirmed that

many DMI users have the interest and technical knowledge required to build their own instruments.

We have also confirmed that there is a divide between those that prefer the computer due to its

flexibility and others that prefer hardware devices due to their immediacy, tactility and robustness,

confirming the core premises of Prynth.

User studies applied to DMIs are a difficult proposition. There is so much diversity that

classification and analysis becomes a true challenge. At the same time, this same diversity is one

of the most interesting aspects of DMIs. No matter how difficult, we are invested in continuing

these avenues of research, so that in the future we can be even more assertive about the profiles

of DMI users and develop research and tools that better answer their needs. DMI researchers

concentrate heavily on groundbreaking technical achievements but they often tend to forget how

that research must be applied outside academia to the most important actor: the musician.

7.5.3 New Conceptual Proposals

Paraphrasing Niebuhr, when we first started this research we aimed at the stars so we could reach

the sky. We maintain our conviction of the benefits of completely removing traditional computer

interaction models from at least some types of DMIs. At first glance this may seem like quite

a discordant proposal. Even in Prynth, some kind of computer-like device is still necessary for

programming the instrument, so how could we maintain the flexibility of programming with no

keyboards and screens to write and display source code?

Maybe the answer lies in a more serious consideration about the possibilities of tangible

7.5 Future Work 173

programming, a concept explored in the work of researchers like McNerney (McNerney 2004),

Horn (Horn et al. 2007) and Bowers (Bowers et al. 2006). The concept behind tangible program-

ming is that physical objects can be spatially arranged to represent computing algorithms. In

the work of McNerney and Horn, those objects are represented by Lego-like bricks that can be

easily interconnected. Bowers has explored similar concepts in “Pin&Play&Perform”, a musical

application where physical widgets like buttons, sliders or potentiometers have pin-like connectors

and can be freely attached to a planar surface to create ad hoc controllers. The widgets can also

contain information and Bowers demonstrates how they could be used to dynamically build a Max

patch. If tangible programming proved to be an effective method for creating relatively complex

and rewarding DSP and mapping algorithms, then it could represent a new way of programming

a DMI: one that could more closely resemble the physical interaction with hardware devices of the

music studio.

There are also interesting possibilities for alternative programming methods in advanced input

methods like natural language processing, recently made popular in products like Apple’s Siri or

Microsoft’s Cortana. By coupling natural language with additional machine learning algorithms

containing the principles behind DMI programming, the user could simply describe an algorithm

to the machine, which in turn would be in charge of the assembly of the functional structures of

the program.

These types of alternative programming methods could be the answer to more radical changes

in the way we interact with DMIs. We think they would be truly revolutionary musical instruments.

174

175

Appendices

177

Appendix A

Prynth Technical Details

A.1 Description of Control Board

To follow this description of the Control board, please refer to figure 5.4b. The Teensy microcon-

troller is soldered directly on the board, in the appropriate location marked at the bottom center

right of the board. To the right is the female 2x20 pin header that connects the board to the GPIO

of the RPi. Above the Teensy, there is a first block of digital pins, which includes the I2C bus

on pins 29 and 30. The remainder pins 24–27 and 38–33 are available for general-purpose digital

I/O. To the left of the Teensy there is a analog-to-digital conversion block, with 10 horizontally

aligned ADC channels. They provide power (3.3V), ground (AGND) and accept analog signals

on the SIG pin. To the right there are three more pins, labeled A, B, and C, which provide a

3-bit counter clock that controls the multiplexing daughterboards. To the far left we find another

UART (pins 7 and 8) and the SPI bus (CS on pin 10, DOUT on 11, DIN on 12 and SCK on 13).

Between these two buses there are 3 more general-purpose digital pins (5,6 and 9). On top of the

analog-to-digital conversion section there is a MIDI output, also connected to Teensy’s TX pin

number 8. With the addition of a 47Ω resistor, this output can be used to send all sensor signals

to legacy MIDI devices.

178 Prynth Technical Details

A.2 Remapping of the Raspberry Pi UARTs

In this appendix we describe the steps to remap the Raspberry Pi’s PL011 UART to the GPIO pins.

The first step was to disable the debugging console on the mini UART, which can be done by editing

the file /boot/command.txt that holds boot parameters for the kernel. One of these parameters is

console=serial0,115200 which we deleted, resulting in the following base /boot/command.txt file.

dwc_otg.lpm_enable=0 console=tty1 root=/dev/mmcblk0p2 rootfstype=ext4 elevator=deadline

fsck.repair=yes rootwait

Next, we mapped the Bluetooth module to work on the on top of the mini UART, instead of the

PL011. This remapping is done by modifying another of the Raspberry Pi’s start-up configuration

files, located in /boot/config.txt. Read at boot time by the loader, this file holds several options

stored as key/value pairs. The key dtoverlay invokes the loading of device tree overlays. The

device tree is a compiled file describing the peripherals and interfaces available to the SoC, which

in turn automatically searches and loads the necessary kernel modules. A device tree overlay is a

differential file that modifies the default device tree at boot time before the result is passed to the

kernel. There are several preexisting device tree overlays and manufacturers of add-on boards for

the Raspberry Pi can create and distribute new ones. To map the Bluetooth module to the mini

UART, we have used the pi3-miniuart-bt device tree overlay, by adding the following to config.txt.

dtoverlay=pi3-miniuart-bt

After this procedure, the PL011 is free to be used in other applications and is automatically

mapped to the GPIO header pins 8 for transmission (TX) and 10 reception (RX). In the case of

Prynth, these pins connect to the first serial port of the Teensy (pins 0 and 1) via Control board.

A.3 Compiling SuperCollider for the Raspberry Pi 179

A.3 Compiling SuperCollider for the Raspberry Pi

The compilation of SuperCollider for Prynth is relatively straightforward and mostly equivalent to

the procedure for x86 processors, save for minor adjustments. These include disabling the CMake

flags pertaining the use of the IDE, QT and any other x86-specific features, such as streaming

SIMD extensions (SSE) acceleration. QT is the windowing solution for the IDE GUI and therefore

irrelevant to Prynth.

cmake -L -DCMAKE_BUILD_TYPE="Release" -DBUILD_TESTING=OFF -DSSE=OFF -DSSE2=OFF

-DSUPERNOVA=OFF -DNATIVE=OFF -DSC_WII=OFF -DSC_IDE=OFF -DSC_QT=OFF -DSC_ED=OFF

-DSC_EL=OFF -DSC_VIM=OFF ..

At the time of writing, there is also a known bug in the resulting sclang binary, which will

report 100% CPU usage even without any real processing load. This error is apparently related

to an internal timer using the Boost library. To avoid this problem the SC_TerminalClient.cpp

source file should be edited, substituting the mTimer cancel method by a conditional in function

of the Boost error.

//mTimer.cancel();

if (error==boost::system::errc::success) {mTimer.cancel();} else {return;}

SuperCollider compiles user classes at start-up, so some of its native GUI classes will throw

errors because we have have no GUI. To avoid these errors, one can simply move or delete the

SuperCollider GUI classes from the class compilation path.

sudo mv /usr/local/share/SuperCollider/SCClassLibrary/Common/GUI

/usr/local/share/SuperCollider/SCClassLibrary/scide_scqt/GUI

sudo mv /usr/local/share/SuperCollider/SCClassLibrary/JITLib/GUI

180 Prynth Technical Details

/usr/local/share/SuperCollider/SCClassLibrary/scide_scqt/JITLibGUI

181

Bibliography

Ableton (2018). url: https://www.ableton.com/en/ (visited on 09/27/2018).
Advanced Music S.L. (2018). Sónar Barcelona - Music, Creativity & Technology. es. url: https:

//sonar.es/ (visited on 12/11/2018).
ALSA Project (2018). url: https://www.alsa-project.org/main/index.php/Main_Page

(visited on 04/11/2018).
Anode (2018). MeeBlip. url: https://meeblip.com/products/meeblip-anode-synth (visited

on 12/04/2018).
Antares (2018). url: https://www.antarestech.com/ (visited on 02/06/2018).
Arduino (2014). url: https://www.arduino.cc/ (visited on 11/22/2018).
Autodesk, Inc. (2018). Instructables - How to make anything. url: https://www.instructables.

com/ (visited on 12/07/2018).
Avizienis, Rimas, Adrian Freed, Takahiko Suzuki, and David Wessel (2000). “Scalable connectivity

processor for computer music performance systems”. In: Proceedings of International Computer
Music Conference. Berlin, pp. 523–526.

Balena (2018). Etcher. url: https://etcher.io (visited on 05/16/2018).
Barbosa, Álvaro (2003). “Displaced soundscapes: a survey of network systems for music and sonic

art creation”. In: Leonardo Music Journal 13, pp. 53–59.
Barrass, Tim (2018). Mozzi. url: http://sensorium.github.io/Mozzi/ (visited on 11/22/2018).
Barrière, Jean-Baptiste, Pierre-François Baisneée, Adrian Freed, and Marie-Dominique Baudot

(1989). “A digital signal multiprocessor and its musical application”. In: Proceedings of Inter-
national Computer Music Conference. Columbus, OH, pp. 17–20.

Bastl Instruments (2018). Trinity. url: http://www.bastl-instruments.com/instruments/
trinity/ (visited on 01/30/2018).

BeagleBoard (2018). url: https://beagleboard.org/ (visited on 08/07/2018).
Bélanger, Olivier (2018). Pyo. url: http://ajaxsoundstudio.com/software/pyo/ (visited on

09/25/2018).
Berdahl, Edgar and Wendy Ju (2011). “Satellite CCRMA: A musical interaction and sound syn-

thesis platform”. In: Proceedings of the International Conference on New Interfaces for Musical
Expression. Oslo, pp. 173–178.

Berklee College of Music (2018). Voltage Connect Conference. url: https://www.berklee.edu/
voltage-connect (visited on 12/11/2018).

Bleep Labs (2018). The Nebulophone. url: http://bleeplabs.com/store/nebulophone/ (visited
on 11/22/2018).

182 Bibliography

Bode, Harald (1984). “History of electronic sound modification”. In: Journal of the Audio Engi-
neering Society 32.10, pp. 730–739.

Bottoni, Paolo et al. (2007). “Use of a dual-core DSP in a low-cost, touch-screen based musical
instrument”. In: Proceedings of the International Conference on New Interfaces for Musical
Expression. New York City, pp. 394–395.

Bowers, John and Nicolas Villar (2006). “Creating ad hoc instruments with Pin&Play&Perform”.
In: Proceedings of the International Conference on New Interfaces for Musical Expression.
Paris, pp. 234–239.

Buxton, William (1977). “A composer’s introduction to computer music”. In: Journal of New Music
Research 6.2, pp. 57–71.

— (1997). “Artists and the art of the luthier”. In: ACM SIGGRAPH Computer Graphics 31.1,
pp. 10–11.

Buxton, William et al. (1978). “An overview of the structured sound synthesis project”. In: Pro-
ceedings of International Computer Music Conference. Illinois.

Cascone, Kim (2003). “Grain, sequence, system: three levels of reception in the performance of
laptop music”. In: Contemporary Music Review 22.4, pp. 101–104.

Casiez, Géry, Nicolas Roussel, and Daniel Vogel (2012). “1 Euro filter: a simple speed-based low-
pass filter for noisy input in interactive systems”. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. ACM Press, pp. 2527–2530.

Chadabe, Joel (1997). Electric sound: the past and promise of electronic music. Upper Saddle
River, NJ: Prentice Hall.

Chowning, John M. (1973). “The synthesis of complex audio spectra by means of frequency mod-
ulation”. In: Journal of the Audio Engineering Society 21.7, pp. 526–534.

CIRMMT, Centre for Interdisciplinary Research in Music Media and Technology (2018). url:
http://www.cirmmt.org/ (visited on 12/12/2018).

Clarke, Arthur C. (1982). Profiles of the future : an inquiry into the limits of the possible. 2nd rev.
ed. London: Victor Gollancz.

Club Framboise (2018). url: https://www.facebook.com/clubframboise/ (visited on 12/11/2018).
CodeMirror (2018). url: https://codemirror.net/ (visited on 09/25/2018).
Collins, Karen (2008). Game sound : an introduction to the history, theory, and practice of video

game music and sound design. Cambridge, MA: MIT Press.
Collins, Nick, Margaret Schedel, and Scott Wilson (2013). Electronic music. Cambridge, MA:

Cambridge University Press.
Curtin, Steve (1994). “The SoundLab: a wearable computer music instrument”. In: Proceedings of

the International Computer Music Conference. Aarhus, Denmark.
Cycling ’74 (2018). url: https://cycling74.com/ (visited on 11/23/2018).
Debian (2018). url: https://www.debian.org/ (visited on 05/23/2018).
DeSandro, David (2018). Draggabilly. url: https://draggabilly.desandro.com/ (visited on

09/05/2018).
Digilent Inc. (2018). url: https://store.digilentinc.com/ (visited on 11/22/2018).
Digital Art Conservation (2018). url: http://www.digitalartconservation.org/ (visited on

03/26/2018).

Bibliography 183

Dillon, Roberto (2015). “Ready: the commodore 64 and its architecture”. In: Singapore: Springer
Singapore, pp. 9–16.

DOCAM, Documentation and conservation of the media arts heritage (2018). url: http://www.
docam.ca/ (visited on 03/26/2018).

Dream Theater (2018). Official Website. url: http://dreamtheater.net/ (visited on 12/11/2018).
Eckel, Gerhard, Francisco Iovino, and René Caussé (1995). “Sound synthesis by physical modelling

with Modalys”. In: Proceedings of the International Symposium on Musical Acoustics. Dourdan,
France, pp. 479–482.

Edwards, Michael (2011). “Algorithmic composition: computational thinking in music”. In: Com-
munications of the ACM 54.7, pp. 58–67.

Eernisse, Matthew (2018). EJS - Embedded JavaScript templates. url: https://ejs.co/ (visited
on 12/05/2018).

eNTERFACE’17 (2017). url: http://artes.ucp.pt/enterface17/ (visited on 12/11/2018).
Essl, Karlheinz and Julio d’Escrivan (2007). “Algorithmic composition”. In: The Cambridge Com-

panion to Electronic Music. Ed. by Nick Collins. Cambridge, MA: Cambridge University Press,
pp. 107–125.

Fe Pi (2018). Fe-Pi Audio Z V2. url: https://fe-pi.com/products/fe-pi-audio-z-v2 (visited
on 11/02/2018).

Fitzmaurice, George W. (1996). “Graspable user interfaces”. PhD thesis. University of Toronto.
Flanagan, James L. and R. M. Golden (1966). “Phase vocoder”. In: Bell Labs Technical Journal

45.9, pp. 1493–1509.
Flynn, Michael (1972). “Some computer organizations and their effectiveness”. In: IEEE Transac-

tions on Computers 100.9, pp. 948–960.
Franco, Ivan (2018a). Prynth Website. url: https://prynth.github.io/ (visited on 11/30/2018).
— (2018b). The Mitt - YouTube. url: https://www.youtube.com/watch?v=Oj7HfcdJhi8&t=8s

(visited on 11/30/2018).
Franco, Ivan, Harish Venkatesan, Ajin Tom, and Antoine Maiorca (2018). Prynth GitHub. original-

date: 2016-11-07T17:58:27Z. url: https://github.com/prynth/prynth (visited on 11/30/2018).
Franco, Ivan and Marcelo M. Wanderley (2015). “Practical evaluation of synthesis performance on

the BeagleBone Black”. In: Proceedings of the International Conference on New Interfaces for
Musical Expression. Baton Rouge, LA, pp. 223–226.

— (2016). “The Mitt: case study in the design of a self-contained digital music instrument”.
In: Proceedings of the 12th International Symposium on Computer Music Multidisciplinary
Research. São Paulo.

— (2017). “Prynth: a framework for self-contained digital music instruments”. In: Bridging People
and Sound. Springer International Publishing, pp. 357–370.

Garrett, Jesse J. (2018). Ajax: A New Approach to Web Applications. url: //www.adaptivepath.
org/ideas/ajax-new-approach-web-applications/ (visited on 12/05/2018).

Gaye, Lalya, Lars E. Holmquist, Frauke Behrendt, and Atau Tanaka (2006). “Mobile music tech-
nology: report on an emerging community”. In: Proceedings of the International Conference on
New Interfaces for Musical Expression. Paris, pp. 22–25.

184 Bibliography

Gibbons, J. A., D. M. Howard, and A. M. Tyrrell (2005). “FPGA implementation of 1D wave
equation for real-time audio synthesis”. In: IEE Proceedings - Computers and Digital Techniques
152.5, pp. 619–631.

Guthman Musical Instrument Competition (2018). url: http://www.guthman.gatech.edu/
(visited on 12/12/2018).

Hackaday.com (2018). url: https://hackaday.com/ (visited on 08/16/2018).
Hollinger, Avrum, Joseph Thibodeau, and Marcelo M. Wanderley (2010). “An embedded hard-

ware platform for fungible interfaces”. In: Proceedings of the International Computer Music
Conference. New York City, pp. 26–29.

Horn, Michael S. and Robert J. K. Jacob (2007). “Designing tangible programming languages for
classroom use”. In: Proceedings of the 1st International Conference on Tangible and Embedded
Interaction. Baton Rouge, LA: ACM, pp. 159–162.

Hunt, Andy and Marcelo M. Wanderley (2002). “Mapping performer parameters to synthesis
engines”. In: Organised Sound 7.02, pp. 97–108.

Hunt, Andy, Marcelo M. Wanderley, and Matthew Paradis (2003). “The importance of parameter
mapping in electronic instrument design”. In: Journal of New Music Research 32.4, pp. 429–
440.

Ishii, Hiroshi and Brygg Ullmer (1997). “Tangible bits: towards seamless interfaces between peo-
ple, bits and atoms”. In: Proceedings of the ACM SIGCHI Conference on Human Factors in
Computing Systems. Atlanta, pp. 234–241.

iZotope Inc. (2018). en. url: https://www.izotope.com/ (visited on 12/11/2018).
JACK Audio Connection Kit (2018). url: http://jackaudio.org/ (visited on 07/05/2018).
jQuery (2018). url: https://jquery.com/ (visited on 07/12/2018).
Karplus, Kevin and Alex Strong (1983). “Digital synthesis of plucked-string and drum timbres”.

In: Computer Music Journal 7.2, p. 43.
Kartadinata, Sukandar (2003). “The Gluiph: a nucleus for integrated instruments”. In: Proceedings

of the International Conference on New Interfaces for Musical Expression. Montreal, pp. 180–
183.

— (2006). “The Gluion advantages of an FPGA-based sensor interface”. In: Proceedings for New
Interfaces for Musical Expression Conference. Paris, pp. 93–96.

Kizaba, Lionel (2018). Kizaba - Musique électronique afro-house congolaise. url: http://kizaba.
ca/ (visited on 12/12/2018).

Koenig, Gottfried Michael (1983). “Aesthetic integration of computer-composed scores”. In: Com-
puter Music Journal 7.4, p. 27.

Lansky, Paul (1990). “The architecture and musical logic of CMix”. In: Proceedings of the Inter-
national Computer Music Conference. Glasgow.

Lazzarini, Victor, Steven Yi, John Fitch, et al. (2016). “Scripting Csound”. In: Csound. Springer
International Publishing, pp. 195–205.

Lazzarini, Victor, Steven Yi, Joseph Timoney, et al. (2012). “The mobile Csound platform”. In:
Proceedings of International Computer Music Conference. Ljubliana.

Le Vivier (2018). Carrefour des musiques nouvelles. url: https://levivier.ca/ (visited on
12/12/2018).

Bibliography 185

Leman, Marc (2016). The expressive moment: how interaction (with music) shapes human empow-
erment. Cambridge, MA: MIT Press.

Leonard, J. Paul, Bill Kapralos, Holly Tessler, and Leonard J. Paul (2014). “For the love of
Chiptune”. In: The Oxford Handbook of Interactive Audio. Ed. by Karen Collins, Bill Kapralos,
and Holly Tessler. Oxford University Press.

Levine, Steve and J. William Mauchly (1980). “The fairlight computer musical instrument”. In:
Proceedings of International Computer Music Conference. New York City.

Liblo (2018). Lightweight OSC implementation. url: http://liblo.sourceforge.net/ (visited
on 07/10/2018).

Lohner, Henning (1986). “The Upic system: a user’s report”. In: Computer Music Journal 10.4,
pp. 42–49.

Longbottom, Roy (2018). Roy Longbottom’s PC benchmark collection. url: http://www.roylongbottom.
org.uk/ (visited on 11/02/2018).

MacConnell, Duncan et al. (2013). “Reconfigurable autonomous novel guitar effects (RANGE)”.
In: Proceedings of the International Conference on Sound and Music Computing. Stockholm.

Maker Media, Inc. (2018). Make. url: https://makezine.com/ (visited on 12/07/2018).
Malloch, Joseph, David Birnbaum, Elliot Sinyor, and Marcelo M. Wanderley (2006). “Towards a

new conceptual framework for digital musical instruments”. In: Proceedings of the 9th Interna-
tional Conference on Digital Audio Effects. Montreal, pp. 49–52.

Malloch, Joseph and Marcelo M. Wanderley (2007). “The T-Stick: from musical interface to musical
instrument”. In: Proceedings of the International Conference on New Interfaces for Musical
Expression. New York, New York: ACM Press, p. 66.

Manning, Peter (2013). Electronic and computer music. Oxford University Press.
Marier, Martin (2018). The Sponge. url: http://www.martinmarier.com/wp/?page_id=12

(visited on 12/12/2018).
Mathews, Max (1989). “The conductor program and mechanical baton”. In: Current Directions in

Computer Music Research. Cambridge, MA: MIT Press.
— (1991). “The radio baton and conductor program, or: pitch, the most important and least

expressive part of music”. In: Computer Music Journal 15.4, p. 37.
Mathews, Max and F. Richard Moore (1970). “GROOVE - a program to compose, store, and edit

functions of time”. In: Communications of the ACM 13.12, pp. 715–721.
McCartney, James (1996). “SuperCollider: a new real time synthesis language”. In: Proceedings of

International Computer Music Conference. Hong Kong, pp. 257–258.
— (2002). “Rethinking the computer music language: SuperCollider”. In: Computer Music Journal

26.4, pp. 61–68.
McNerney, Timothy S. (2004). “From turtles to tangible programming bricks: explorations in

physical language design”. In: Personal and Ubiquitous Computing 8.5, pp. 326–337.
McPherson, Andrew (2017). “Bela: An embedded platform for low-latency feedback control of

sound”. In: The Journal of the Acoustical Society of America 141.5, pp. 3618–3618.
Meneses, Eduardo A. L., Sérgio Freire, and Marcelo M. Wanderley (2018). “GuitarAMI and

GuiaRT: two independent yet complementary augmented nylon guitar projects”. In: Proceed-
ings of the International Conference on New Interfaces for Musical Expression. Virginia.

186 Bibliography

Microchip Technology (2018a). 16-bit PIC MCUs|PIC24|dsPIC33. url: https://www.microchip.
com/design-centers/16-bit (visited on 12/05/2018).

— (2018b). 32-Bit Microcontrollers (MCU). url: https : / / www . microchip . com / design -
centers/32-bit (visited on 12/05/2018).

— (2018c). 8-Bit MCUs. url: https://www.microchip.com/design-centers/8-bit (visited on
11/21/2018).

MIDI Manufacturers Association (2018). url: https://www.midi.org/ (visited on 10/05/2018).
Miranda, Eduardo Reck and Marcelo M. Wanderley (2006). New digital musical instruments:

control and interaction beyond the keyboard. A-R Editions, Inc.
MOD Devices GmbH (2018). MOD Duo. url: https://www.moddevices.com/products/mod-duo

(visited on 11/21/2018).
Moggridge, Bill (2007). Designing interactions. Cambridge, MA: MIT Press.
Moog Music (2018). url: https://www.moogmusic.com/ (visited on 12/11/2018).
Moog, Robert A (1986). “MIDI: musical instrument digital interface”. In: Journal of the Audio

Engineering Society 34.5, pp. 394–404.
Moore, F. Richard (1982). “The computer audio research laboratory at UCSD”. In: Computer

Music Journal 6.1, pp. 18–29.
Motuk, Erdem, Roger Woods, and Stefan Bilbao (2005). “FPGA-based hardware for physical mod-

elling sound synthesis by finite difference schemes”. In: Proceedings of the 2005 International
Conference on Field-programmable Technology. IEEE, pp. 103–110.

Motuk, Erdem, Roger Woods, Stefan Bilbao, and John McAllister (2007). “Design methodology
for real-time FPGA-based sound synthesis”. In: IEEE Transactions on Signal Processing 55.12,
pp. 5833–5845.

Multer (2018). url: https://github.com/expressjs/multer (visited on 09/14/2018).
Musallica (2018). url: https://www.facebook.com/Musallica/ (visited on 12/12/2018).
MusicMotion (2018). url: https://musicmotion.org/ (visited on 12/11/2018).
Mutable Instruments (2018). Shruthi. url: https : / / mutable - instruments . net / archive /

shruthi/build/ (visited on 11/22/2018).
Mxmxmx (2018). Terminal Tedium. url: https : / / github . com / mxmxmx / terminal _ tedium

(visited on 09/18/2018).
Native Instruments (2018). Software And Hardware For Music Production And Djing. url: https:

//www.native-instruments.com/en/ (visited on 12/11/2018).
Nexus Web Audio Interfaces (2018). url: https : / / nexus - js . github . io / ui/ (visited on

09/05/2018).
Node.js Foundation (2018a). Express - Node.js web application framework. url: https://expressjs.

com/ (visited on 12/05/2018).
— (2018b). Express 4.x - API Reference. url: https://expressjs.com/en/api.html (visited

on 12/05/2018).
— (2018c). Node.js. url: https://nodejs.org/en/ (visited on 12/02/2018).
Nord Keyboards (2018). Nord Modular. url: http://www.nordkeyboards.com/products/nord-

modular (visited on 01/30/2018).
Norman, Don (2013). The design of everyday things. New York: Basic Books.
Npm (2018). url: https://www.npmjs.com/ (visited on 12/05/2018).

Bibliography 187

Oliveros, Pauline (2005). Deep listening : a composer’s sound practice. New York: iUniverse, Inc.
Open Music Labs Wiki (2018). Repatcher. url: http : / / wiki . openmusiclabs . com / wiki /

repatcher (visited on 09/18/2018).
Orlarey, Yann, Dominique Fober, and Stephane Letz (2009). “FAUST: an efficient functional ap-

proach to DSP programming”. In: New Computational Paradigms for Computer Music, pp. 65–
96.

OSA Electronics (2017). DACBerry PRO for Raspberry Pi. url: https://www.osaelectronics.
com/product/dacberry-pro/ (visited on 11/02/2018).

Paine, Garth (2009). “Gesture and morphology in laptop music performance”. In: The Oxford
handbook of computer music. Ed. by Roger Dean. Oxford University Press, pp. 214–232.

Paradiso, Joseph A. (1997). “Electronic music: new ways to play”. In: IEEE Spectrum 34.12, pp. 18–
30.

Patchblocks (2018). url: http://patchblocks.com/ (visited on 10/16/2018).
Pfeifle, Florian and Rolf Bader (2009). “Real-time physical modelling of a real banjo geometry

using FPGA hardware technology”. In: Musical Acoustics, Neurocognition and Psychology of
Music Hamburg Yearbook for Musicology 25, pp. 71–86.

— (2011). “Real-time finite-difference string-bow interaction field-programmable gate array (FPGA)
model coupled to a violin body”. In: The Journal of the Acoustical Society of America 130.4,
pp. 2507–2507.

— (2013). “Performance controller for physical modelling FPGA sound synthesis of musical in-
struments”. In: Sound-Perception-Performance. Springer, pp. 331–350.

PG Music Inc. (2018). url: http://www.pgmusic.com/ (visited on 02/07/2018).
PJRC: Electronic Projects (2018a). url: https://www.pjrc.com/ (visited on 04/11/2018).
— (2018b). Teensy and Teensy++ pinouts, for C language and arduino software. url: https:

//www.pjrc.com/teensy/pinout.html (visited on 11/02/2018).
Portnoff, M. (1976). “Implementation of the digital phase vocoder using the fast Fourier transform”.

In: IEEE Transactions on Acoustics, Speech, and Signal Processing 24.3, pp. 243–248.
Printemps Numérique (2018). url: http : / / www . printempsnumerique . ca / en/ (visited on

12/12/2018).
PRISM (2018). url: http://www.prism.quebec/?fbclid=IwAR157-52yb5SQpHNVquxssaLP0k5WZP-

VhBeV6-O9keDs_IwillDhgc4vvY (visited on 12/13/2018).
Propellerhead Software (2018). url: https://www.propellerheads.com/ (visited on 12/11/2018).
Puckette, Miller (1988). “The patcher”. In: Proceedings of International Computer Music Confer-

ence. San Francisco: Computer Music Association, pp. 420–425.
— (1991). “Combining event and signal processing in the Max graphical programming environ-

ment”. In: Computer Music Journal 15.3, pp. 68–77.
— (1997). “Pure Data”. In: Proceedings of the International Computer Music Conference. Thes-

saloniki.
— (2002). “Max at Seventeen”. In: Computer Music Journal 26.4, pp. 31–43.
Putnam, William and Tim Stilson (1996). “Frankenstein: A low cost multi-DSP compute engine

for the music kit”. In: Proceedings of International Computer Music Conference. Hong Kong.

188 Bibliography

Raczinski, J. M., G. Marino, S. Sladek, and V. Fontalirant (1999). “SYNTHUP carte PCI pour
la synthèse du son et le traitement de signal en temps reel”. In: Proceedings of the JIM99,
pp. 75–82.

Raczinski, J. M., Stéphane Sladek, and Luc Chevalier (1999). “Filter Implementation on SYN-
THUP”. In: Proceedings of the 2nd COST G-6 Workshop on Digital Audio Effects. Trondheim.

Rasmussen, Jens (1986). Information processing and human-machine interaction: an approach to
cognitive engineering. North-Holland Series in System Science and Engineering 12. New York:
North-Holland.

Raspberry Pi Foundation (2018). Raspberry Pi. url: https://www.raspberrypi.org/ (visited
on 04/11/2018).

Rhizome (2018). url: http://rhizome.org/ (visited on 03/26/2018).
RIDM (2018). Montreal International Documentary Festival. url: http://ridm.ca/en (visited

on 12/12/2018).
Roads, Curtis (2004). Microsound. Cambridge, MA: MIT press.
Roca, Marcellí Antúnez (2018). Marcellí Antúnez Roca. url: http://marceliantunez.com/

(visited on 10/03/2018).
ROLI Ltd. (2018). JUCE. url: https://juce.com/ (visited on 01/30/2018).
Rowe, Robert (1992). “Machine listening and composing with Cypher”. In: Computer Music Jour-

nal 16.1, p. 43.
Rythmopolis (2018). url: https://www.rythmopolis.com/ (visited on 12/11/2018).
Saito, Takashi, Tsutomu Maruyama, Tsutomu Hoshino, and Saburo Hirano (2001). “A music syn-

thesizer on FPGA”. In: Field-Programmable Logic and Applications. Springer, pp. 377–387.
SAT (2018). Société des arts technologiques. url: https://sat.qc.ca/ (visited on 12/12/2018).
Satinger, Chris (2018). Supercollider.js. url: https://crucialfelix.github.io/supercolliderjs/

(visited on 09/14/2018).
Schottstaedt, Bill (1994). “Machine tongues XVII: CLM: Music V meets Common Lisp”. In: Com-

puter Music Journal 18.2, p. 30.
Sequential LLC (2018). url: https://www.sequential.com/ (visited on 12/11/2018).
Smith, Julius O. (1992). “Physical modeling using digital waveguides”. In: Computer Music Journal

16.4, p. 74.
Socket.IO (2018). url: https://socket.io/index.html (visited on 12/11/2018).
Sonic Core (2018). SCOPE. url: http://scope.zone/ (visited on 11/22/2018).
Sullivan, John (2015). “Noisebox: design and prototype of a new digital musical instrument”. In:

Proceedings of the International Computer Music Conference. Denton.
SuperCollider 3.10.0 Help (2018). url: http://doc.sccode.org/ (visited on 12/05/2018).
Suzanne Ciani (2018). url: https://www.sevwave.com (visited on 12/11/2018).
Symbolic Sound (2018). Kyma. url: https://kyma.symbolicsound.com/ (visited on 11/22/2018).
Synthtopia (2016). New Framework For DIY Synthesizers, Prynth. url: http://www.synthtopia.

com/content/2016/11/23/new-framework-for-diy-synthesizers-prynth/ (visited on
11/29/2018).

Taelman, Johannes (2018). Axoloti. url: http://www.axoloti.com/ (visited on 01/30/2018).

Bibliography 189

Taylor, Benjamin et al. (2014). “Simplified expressive mobile development with NexusUI, NexusUp,
and NexusDrop”. In: Proceedings of the International Conference on New Interfaces for Musical
Expression. London, pp. 257–262.

Technologies, Terasic (2018). Terasic - SoC Platform. url: https://www.terasic.com.tw/
cgi-bin/page/archive.pl?Language=English&CategoryNo=204#Category205 (visited on
12/05/2018).

Terasic (2018). url: http://www.terasic.com.tw/ (visited on 11/22/2018).
The OWL (2018). url: https://hoxtonowl.com/ (visited on 10/16/2018).
Theodoropoulos, Dimitris, Catalin Bogdan Ciobanu, and Georgi Kuzmanov (2009). “Wave field

synthesis for 3D audio: architectural Prospectives”. In: Proceedings of the 6th ACM Conference
on Computing Frontiers. New York City: ACM, pp. 127–136.

Topliss, James William, Victor Zappi, and Andrew McPherson (2014). “Latency performance for
real-time audio on Beaglebone Black”. In: International Linux Audio Conference. Karlsruhe,
Germany.

Torre, Giuseppe, Kristina Andersen, and Frank Baldé (2016). “The Hands: The making of a digital
musical instrument”. In: Computer Music Journal 40.2, pp. 22–34.

Trail, Shawn et al. (2014). “El-Lamellophone - a low-cost, DIY, open framework for acoustic
Lemellophone based hyperinstruments”. In: Proceedings of International Conference on New
Interfaces for Musical Expression. London, pp. 537–540.

Ucamco (2018). Gerber Format. url: https://www.ucamco.com/en/file- formats/gerber
(visited on 11/30/2018).

ValentF(x) (2014). FPGA LOGI family. url: http://valentfx.com/fpga-logi-family/ (visited
on 12/05/2018).

Variable Media Network (2018). url: http://www.variablemedia.net/e/welcome.html (visited
on 03/26/2018).

Vercoe, Barry (1993). Csound: a manual for the audio processing system and supporting programs
with tutorials. Cambridge, MA: Massachusetts Institute of Technology.

Wanderley, Marcelo M. and Marc Battier, eds. (2000). Trends in gestural control of music. Pub-
lished: [CD-ROM]. Paris, France: IRCAM - Centre Pompidou.

Wang, Ge and Perry R Cook (2003). “Chuck: a concurrent, on-the-fly, audio programming lan-
guage”. In: Proceedings of International Computer Music Conference. Singapore.

Weiser, Mark (1991). “The computer for the 21st century”. In: Scientific American 265.3, pp. 94–
104.

Wessel, David and Matthew Wright (2002). “Problems and prospects for intimate musical control
of computers”. In: Computer Music Journal 26.3, pp. 11–22.

Williams, Elliot (2016). The Most Flexible Synthesizer is DIY, Raspberry Pi. url: https://
hackaday.com/2016/11/26/the-most-flexible-synthesizer-is-diy-raspberry-pi/
(visited on 11/29/2018).

Wilson, Scott (2018). Prynth is a new open-source platform for making DIY synths. url: https:
//www.factmag.com/2016/11/24/prynth-open-source-diy-synth-framework/ (visited on
11/29/2018).

Wilson, Scott, Nick Collins, and David Cottle, eds. (2011). The supercollider book. Cambridge,
MA: MIT Press.

190 Bibliography

World Wide Web Consortium (2018). XMLHttpRequest. url: https://dvcs.w3.org/hg/xhr/
raw-file/tip/Overview.html (visited on 12/05/2018).

Wright, Matthew (2005). “Open Sound Control: an enabling technology for musical networking”.
In: Organised Sound 10.3, pp. 193–200.

Xenakis, Iannis (1992). Formalized music: thought and mathematics in composition. 6. Pendragon
Press.

Zeltzer, D. and D. J. Sturman (1994). “A Survey of Glove-based Input”. In: IEEE Computer
Graphics and Applications 14, pp. 30–39.

Zhang, Z. (2012). “Microsoft Kinect Sensor and Its Effect”. In: IEEE MultiMedia 19.2, pp. 4–10.

