Webmapper: A Tool for Visualizing and
Manipulating Mappings in Digital Musical
Instruments

Johnty Wang!, Joseph Malloch?, Stephen Sinclair?, Jonathan Wilansky, Aaron
Krajeski', and Marcelo M. Wanderley!

! Input Devices and Music Interaction Laboratory, CIRMMT, McGill University
{johnty.wang, aaron.krajeski}@mail.mcgill.ca,
jonathan.wilansky@gmail.com, marcelo.wanderley@mcgill.ca
2 Graphics and Experiential Media Lab, Dalhousie University
joseph.malloch@dal.ca
3 Multimodal Simulation Lab, Universidad Rey Juan Carlos
stephen.sinclair@urjc.es

Abstract. This paper describes the motivation, implementation, and
usage of the application Webmapper, a tool for visualizing and manip-
ulating mappings in the context of digital musical instrument (DMI)
design. Webmapper is a user interface for interacting with devices on the
libmapper network, a distributed system for making dynamic connec-
tions between signals within discrete devices that constitute a DMI. This
decoupling of the mapping as a separate entity allows flexible representa-
tion and manipulation by any tool residing on the network—exemplified
by Webmapper. We demonstrate the capability and potential utility of
providing different representations of mappings in the work-flow of DMI
design under a variety of collaborative and individual use cases, and
present four visualizations applied to mappings used from a previous
project as a concrete example.

Keywords: mapping, DMI design, prototyping, collaboration, visual-
ization

1 Introduction

Mapping, in the context of digital musical instruments (DMIs)[1], pertains to
the translation of input signals into resultant sound. Since mapping determines
the ultimate behaviour of the instrument, it is an important part of the design
process and an interesting area of research [2].

This paper describes the motivation, implementation, and usage of the ap-
plication, Webmapper, a tool that supports multiple approaches to visualizing
and manipulating mappings in the context of DMI design. First, the contexts
which inspired Webmapper are introduced including a brief introduction to the
libmapper framework that provides the underlying connectivity features. Then,
the structure and implementation of Webmapper is presented using examples of

2 Wang et al.

mappings from projects demonstrating the various visual representations imple-
mented. Finally, an evaluation of the different views are presented, along with a
discussion and future work related to the application.

2 Background and Related Work

2.1 Mapping Tools for DMI Design

A number of general-purpose graphical tools, designed for building interactive
and multimedia systems, are used by the community to create mappings in
the context of DMI design. Some—such as Max*, Pd®, and TouchDesigner®—
provide full programming environments that can be used to define the structure
of the entire instrument. These tools not only allow visual representation of the
connection and processing of signals that make up part of the mapping process,
but also can embed the interfaces to hardware and software components related
to the sensor input devices as well as output synthesis systems. In terms of
representation, these visual environments provide a signal-flow or “patching”
interface that resembles the physical connection of wires in an audio processing
chain.

There are also toolboxes and applications dedicated to the process of de-
signing mappings specifically for DMIs. Some examples such as OSCulator” and
junXion®, are standalone applications that provide drivers for hardware input
devices and allow transmission of signal data to programmed endpoints with
data scaling. Other toolboxes provide specific mapping features to an existing
environment such as a library of mapping and signal conditioning primitives [3],
matrix-based manipulations specifically for mapping [4], mapping between differ-
ent dimension spaces via geometric representations [5], or creation of mappings
via machine learning [6].

One key commonality among all these existing tools is that they provide a sin-
gle method of representing the mapping. Webmapper, on the other hand, allows
more than a single way of representing and manipulating the mapping structure.
The Jack Audio Connection Kit ? provides an API that allows applications to
access and modify the audio and MIDI connections between virtual endpoints
on a local system, which results in the possibility of multiple command-line and
GUI tools. However, Jack was designed to work with connections only.

2.2 libmapper

Through working on a number of collaborative projects involving DMIs span-
ning more than 10 years, a software framework for creating dynamic mappings,

4 https://cycling74.com/products/max/
® https://puredata.info/

S https://www.derivative.ca/

" https://osculator.net/

8 http://steim.org/product/junxion/

9 http://jackaudio.org/

Webmapper: Visualizing Mappings in DMIs 3

libmapper [7], was developed. Some concepts that prompted the development of
libmapper include:

— Experimentation: The design of DMIs involves many variables such as the
selection of sensing components, mapping, and synthesis techniques. These
are not standard procedures and the process often involves exploration and
experimentation.

— Diversity: Since work with DMIs often involves collaborators from different
backgrounds, there isn’t a single tool or approach that will work for everyone.
Fixed representation standards may be limiting.

— Distributed control: Under collaborative contexts, it may be useful to
allow multiple users to view and modify the mapping configuration at the
same time.

To facilitate experimentation, it is necessary to provide the ability for connec-
tions between components to be quickly created and modified. The diversity of
users suggest it may be useful to provide more than a single view and interaction
method on the state of the system. Concurrency implies the need for a network
based model where more than a single user can access and manipulate data at
the same time. As a result, libmapper was developed as a framework upon which
more modular and flexible approaches to mapping design can be realized. At its
core, libmapper as a software library provides the means to expose a device to
a network that allows automated discovery and dynamic connection with signal
conditioning built into the connection itself.

The fundamental components on the libmapper network are devices and sig-
nals. An input device may contain a number of output signals which may for
example be values corresponding to sensors intended to measure a set of ges-
tures, and an output device such as a synthesizer will feature input signals that
correspond to control parameters that affect the generated audio. libmapper al-
lows links to be made between devices which construct high level associations
between devices, and maps which are dataflow connections between parameters
of interest. Another key feature of libmapper is that some basic signal condition-
ing can be built into the connection itself so that commonly used methods such
as scaling, clamping, and basic filtering can be added.

Bindings for libmapper exist for many popular programming languages and
include C/C++, Java, Python, and Node.js. External objects for Max and Pure
Data are also available.

3 Webmapper

Two other GUI applications, Maxmapper and Vizmapper existed prior to the
development of Webmapper. The former was an interface implemented in the
Max environment that provides display and manipulation of connections on the
network based on a list representation, and served as the seminal example of a
usable graphical tool to view and manipulate devices on the network. The lat-
ter was an exploration of alternative representations of larger and more complex

4 Wang et al.

networks [8], and its existence also demonstrated that a different visual represen-
tation of the mapping can be running concurrently due to the distributed nature
of the network. A basic command-line application was also made to manipulate
and view mappings on the libmapper network!?.

Webmapper, as its name implies, is a browser-based application. Originally,
the motivation to build a web-based application was to provide the ability to
run the user interface within a browser on a variety of desktop and mobile plat-
forms. Additionally, the frameworks and libraries for modern web development
platforms support scalable development and deployment of visual user interfaces.

A highlight of Webmapper is that it provides more than a single view on the
mapping structure, which allows multiple, as well as concurrent visual represen-
tations.

3.1 Architecture and Implementation

Webmapper is implemented using a Python back-end that serves two main func-
tions. First, the server provides interfaces to the libmapper network and allows
querying and modification of the state of running devices. Second, the server
hosts the front-end HTML/JavaScript content and synchronizes the state of the
network with the user interface. An overall architecture of Webmapper is shown
in Figure 1.

 libmapper network
________________ —
network network
changes modifications
: N\ _____network N
. changes
Python libmapper websockets JavaScript
monitor + web server BT T e e (Models/Views/Controllers)
_ Y. commands Y.
server client
L Webmapper

Fig. 1. Webmapper Architecture

10 https://sourceforge.net/projects/umapper/

Webmapper: Visualizing Mappings in DMIs 5
3.2 Views

The multiple views implemented in Webmapper were based on prior tools that
had already been developed, as well as graphical design considerations pertain-
ing to the correlation of properties of the network to various visual dimensions
[9]. Each view provides a different method of visualizing and modifying the con-
nections between devices and signals. Creation and modification of mappings are
implemented via graphical input methods such as drag and drop between the vi-
sual elements, click to select, and keyboard shortcuts for removing connections.
The full list of possible interactions for each view is described in [[9], chapter 4].

The following is a description of each view, followed by a visual demonstra-
tion example. The examples were created using saved mapping configuration files
from a previous project, Les Gestes: une nouvelle génération des instruments de
musique numérique pour le contréle de la synthése et le traitement de la musique
en performance par les musiciens et les danseurs'!, a collaborative research
project directed by Sean Ferguson and Marcelo Wanderley at McGill University
and choreographer Isabelle van Grimde from the Montreal-based dance company
Van Grimde Corps Secrets'2. This project involving multiple wearable interfaces
and a modular software synthesis system. At the time when these mappings were
created, Webmapper had not yet been implemented so the only view available
was the list based representation provided by Maxmapper. In this sample map-
ping there are two input devices connected to three output modules. The two
input devices are identical wearable DMIs worn by dancers, and they control dif-
ferent parameters of three output devices simultaneously. One receiving device,
a spatializer controller, is controlled by both input devices while two synthesizers
are driven by each input device independently. Each view implemented allows a
different way of visualising the connections in the network.

All Devices /gestes-rib2.1 /gestes-rib4.1
Sources Links Destinations
Name Outputs P Port Name Inputs IP Port

/clef.munger-

3 142.157.138.83 12822
octo~.1

Igestes-rib2.1 4 142.157.138.83 13127

[clef.munger~.1 3 142.157.138.83 12032
Igestes-rib4.1 4 142.157.138.83 18148

[clef.spat~.1 3 142.157.138.83 19096
2 of 2 devices 4 of 4 links 3 of 3 devices

Fig. 2. List View device connections

' Gestures: a new generation of digital musical instruments for controlling synthesis
and processing of live music by musicians and dancers

12 .
www.vangrimdecorpssecrets.com/

6 Wang et al.

List View The List View, one of the most direct ways of visually representing
connections, simply provides a bipartite graph showing source devices on the left
and destination devices on the right. Lines with arrowheads connect between
source and destinations. Once a link is made through dragging and dropping
between a source and destination device, a new tab window is created for the
source device that allows signal to signal mappings to be made. Figure 2 shows
the two input devices connected to 3 output devices. Here we can see that input
device 1 is connected to output devices 1 and 3, while input device 2 is connected
to output devices 2 and 3.

Selecting the tab window of input devices, we see how the individual signals
are connected to the synthesizer inputs, as shown in Figure 3 left and right for
the two devices.

The main advantage of the list view is that it lists all the connections between
devices and signals at once. However, when there are a lot of connections, the
visualization can become cluttered very quickly.

All Devices | [gestes-ib2.1 | Igestes-rib4.1 All Devices Igestes-rib2.1 fgestes-rib4.1
Sources Connections Destinations Sources Connections Destinations
Name Type Length Name Type Length Name Type Length Name Type Length

_—— lcletmungerocto~.tigain [_—— [cletmunger~-t/gain [
Jgestes-rib2.1fbrush f 1 Jgestes-riba. 1fbrush f 1

Jelef munger-octo~.1/pitch [Jelef munger~ 1/pitch [

Jgestes-rib2. 1/coverage i 1 feletmungerocto-fpitchvar {1 yojier i tfcoverage i 4 [cletmunger~.jpitch-var [

[clef munger-octo~.1fpositon £ 1 Jclef munger~ 1/position [
Jgestes-rib2. 11t [1 lolefspat--Vjsourcel.azimuth f 1 /gestes-rib4.1fit 1 1 Jolef spat-. Vsourcel azimuth {1

[elef.spat~.ljsource3.azimuth {1 [clel.spat~.V/source3.azimuth 1 1

Igestes-rib2. 1ftouch f 1 Igestes-ribd. tftouch 7 1
[clef.spat- Vjsourced azimuth — f 1 [olef spat- V/sourced azimuth § 1

4of 4signals 6of 6 connections 7 of 7 signals. 40f 4 signals 40f 4 connections 7 of 7 signals.

Fig. 3. List View signal connections for input device 1 and 2

Grid View In this view, inspired by the EagenMatrix'3 application, the net-
work is represented by two grids. The left grid lists source devices on the hori-
zontal axis and destination devices are on the vertical axis. Intersection points, if
filled in blue, show the existence of links between devices. Devices must be added
to the right grid to show their signals and connections; vertical /horizontal lines
indicate the device has been added, and the right grid provides a similar repre-
sentation for signals and connections. In Figure 4, only the first input and first
output devices have been added. In figure 5, all devices have been added. The
grid view is equipped with the ability to save view configurations into presets,
allowing you to switch quickly between them.

One advantage of the Grid view is that, unlike the List View, a large number
of connections will still be legible since there are no overlapping lines used to
represent each link.

3 http://www.hakenaudio.com/Continuum/eaganmatrixoverv.html

Webmapper: Visualizing Mappings in DMIs 7

/gestes-rib2.1
/gestes-rib4.1
/gestes-rib2.1/brush
/gestes-rib2.1/coverage
/gestes-rib2.1/titt
/gestes-rib2.1/touch

Jclef.munger-octo~.1/ /clef.munger-octo~.1/gain

/clef.munger-~.1
P —— .
/clef.spat-~.1

/clef.munger-octo~.1/position

=1 .o0m

[m

Fig. 4. The Grid View, showing connections between two devices

Jgestes-rib4.1

/gestes-rib2.1/orush
/gestes-rib2.1/coverage
/gestes-rib2.1/ouch
/gestes-riba.1/brush
/gestes-riba.1/coverage
/gestes-riba. 1/t

/gestes-riba.1/touch

/clef.munger-octo-.1/gain
/clef.munger-octo~.1/pitch
Jclef.munger-octo-~.1/pitch-var [|
/clef.munger-octo-~.1/position
Jclet munger~.1/gain
/clef.munger~1 || ——— Jolet. munger~.1/pitch
/clef.munger~.1/pitch-var | |
/clef.munger-octo~. 1/position | |
/clef.spat-~.1/source1.azimuth
/clef.spat-.1/source3.azimuth B
/clef.spat-.1/sourced.azimuth | |

o
|
: ‘

/clef.munger-octo~.1/ || ——

-

/clef.spat-~.1

=] -oom

Fig. 5. The Grid View, showing connections between multiple devices

8 Wang et al.

Balloon View Based on the tool implemented in [8], this view displays signals
as a nested hierarchy—generated from textual analysis of the signals’ OSC ad-
dress URLs—of smaller circles within a larger one representing the device. Like
the Grid View, it allows multiple source devices to be displayed at the same time
(Figure 6).

gestes-rib2.1 clef.munger-octo-~.1

gestes-rib4.1 clef.munger-.1

clef.spat-~.1

Fig. 6. The Balloon View

Unique to the Balloon View, a device can be selected by clicking inside the
circle causing a “zoom” into the device, which then shows the individual signals
as larger circles and lists the individual signals of the device on the side legend,
providing further levels of detail. Figure 7 shows an input device 1 selected,
followed by output device 1 in Figure 8. Clicking on the top of the device labels
will “zoom out” of the selected device.

_ cetminserociont
« brush

« coverage
o tilt

« touch

clef.munger-.1

clef.spat-.1

gestes-rib4.1

&

Fig. 7. Zooming in on a source device in the Balloon View

Webmapper: Visualizing Mappings in DMIs 9

« gain

« pitch

« pitch-var
« position

« brush

« coverage
o tilt

« touch

gestes-rib4.1 clef.munger-~.1

clef.spat-.1

Fig. 8. Zooming in on both the source and destination

Hive View This view displays each device on a single axis, with nodes repre-
senting each signal. Lines between nodes on different devices show connections
between signals. This view, like the Balloon View, allows multiple source devices
to be displayed at the same time.

Sources
= m/gestes-rib2.1
« m/gestes-rib4.1

g I
0 e

Destinations e o

+ m/clef.munger-octo~.1 o o

+ m/clef.munger~.1 e @,\7\®\7

= m/clef.spat~.1 e — o

Jsource1.azimuth
Isource3.azimuth
~ [source4.azimuth

Source/Destination Filters

Fig. 9. The Hive View

Similar to the selective rendering features of other views, it is possible to
filter out devices and signals. In the Hive View the selection is performed using
checkboxes on the left. Signal names are displayed at the bottom of the screen
when a particular connection is selected. Figure 10 shows these two features.

Connection Editor The above views provide different methods for visually
representing and working with the basic signal connections. Since libmapper also
provides processing built into the connection itself, a separate interface was im-
plemented to display and modify the mapping expression and range parameters,
as shown in Figure 11. This interface allows the signal processing features of
libmapper to be viewed and modified. A basic interface for saving and restoring

10 Wang et al.

Sources
« m/gestes-rib2.1
+ m/gestes-rib4.1

Destinations

+ m/clef. munger-octo~.1

+ m/clef.munger~.1

= m/clef.spat~.1
/source1.azimuth

/source4.azimuth

e © o e

Source/Destination Filters
Igestes-rib2.1/touch [clef.spat~.1/source3.azimuth

Fig. 10. Selective rendering and labeling in the Hive View

a mapping is also provided. The mapping configurations are saved as JSON!4
files, and when loaded, Webmapper will attempt to restore the recorded mapping
connections onto the network by triggering the associated libmapper commands.

Load Save Mode: Byp Line Calib Expr Src Range:

:

Display: | List B Expression: y=1+5*sin(x*pi*0.01) Dest Range: -« > >

Fig. 11. The load/save and connection editor interface, showing an arithmetic expres-
sion applied to the connection.

3.3 User Evaluation

An informal user evaluation was performed on three different views (List, Grid,
and Hive)!® using measurable factors of time to learn, speed of performance,
error rate, and subjective satisfaction [10]. Three users, who were researchers
in the field of DMI design, participated in the evaluation. In the experiment
the users were asked to create a mapping for DMIs that they were prototyping
using the List View, erase it, and then recreate it using the Grid and then Hive
views. The users were observed by the experimenter and followed up with a
discussion to investigate the observations and collect general user feedback. A
more comprehensive description and discussion on the evaluation is presented in
Chapter 5 of [11]. Table 1 contains a summary of the rankings (1=best, 3=worst)
of each view for the measured metrics.

The evaluation shows that the alternative interfaces provide quite different
methods of interaction and visualization with strengths and weaknesses in dif-
ferent situations. For example, the Hive View was easiest to understand as entire

14 JavaScript Object Notation
5 The Balloon View was not yet implemented at the time of evaluation.

Webmapper: Visualizing Mappings in DMIs 11

Table 1. Measurable human factors for each view

Metric List|Grid|Hive
Time to learn 2 3 1
Speed 1 2 |3
Error rate 1 2 3
Subjective Satisfaction| 1 2 |3
Ability to visualize 3 1]2

devices and signal connections were presented at the same time, but it was much
harder to find a particular signal since it required selecting a signal node before
the name of the signal can be revealed. The List View, on the other hand, pro-
vided the most straightforward visual representation of connections, but due to
the separate tabs for each output device, did not provide for a easy way to obtain
an overall picture of the network without switching tabs.

4 Discussion and Future Work

The results of the described evaluation provide a starting point in showing the
differences between each view based on a limited number of metrics for a sin-
gle user performing very specific tasks. In order to further justify the original
motivations, additional in depth evaluations should be done to qualify the suc-
cess in which these different representations have on the original motivations
of supporting experimentation and diversity of users. Since the system provides
multiple, concurrent representations of the network, the third goal of distributed
control is therefore fulfilled by the nature of the implementation.

In terms of the visualizations themselves, thus far we have only implemented
the representation of the mapping structure. However, the process of DMI design
goes beyond just the connection between signals at a certain point in time: For
example, how the mappings are modified over time, as well as the actual signals
transmitted through the network are additional factors worth consideration. In-
tegration of version control [12] into the tool as well as live signal visualization
(in tools like OSCulator) and analysis can be useful for recalling the temporal
progression of the design process, and afford further insight on the current state
of the system, respectively.

5 Conclusion

In this paper we have presented Webmapper, a visual tool for viewing and manip-
ulating mappings in the context of DMI design. By providing a visual interface
for devices and signals on the libmapper network with multiple representations
and interaction methods, we aim to support different DMI design concepts and
workflows, especially in collaborative contexts. It should be stressed that al-
though the views implemented in this application were motivated by specific

12

Wang et al.

perspectives, the overall framework is intended to support the creation of tools
to fit a diversity of perspectives. With completely open-source code and a multi-
tude of language bindings it is relatively easy for developers to build additional
tools for libmapper, and the modular nature of Webmapper supports the rapid
addition of new views and manipulation strategies. We hope that further usage
of the ecosystem demonstrated through the implementation of libmapper and
Webmapper will lead to the development of more interesting perspectives on
mapping, both through internal features as well as new tools and use-cases.

References

10.

11.

12.

Miranda, E.R., Wanderley, M.M.: New digital musical instruments: control and
interaction beyond the keyboard. Volume 21. AR Editions, Inc. (2006)

. Hunt, A., Wanderley, M.M., Paradis, M.: The Importance of Parameter Mapping

in Electronic Instrument Design. Journal of New Music Research 32(4) (2003)
429-440

Steiner, H.C.: Towards a catalog and software library of mapping methods. In:
Proceedings of the 2006 Conference on New Interfaces for Musical Expression.
NIME ’06, Paris, France, France, IRCAM - Centre Pompidou (2006) 106-109
Bevilacqua, F., Miiller, R., Schnell, N.: MnM : a Max / MSP mapping toolbox.
In: Proceedings of the International Conference on New Interfaces for Musical
Expression. (2005)

Van Nort, D., Wanderley, M.M., Depalle, P.: Mapping Control Structures for Sound
Synthesis: Functional and Topological Perspectives. Computer Music journal 38(3)
(2014) 6-22

Fiebrink, R., Trueman, D., Cook, P.: A metainstrument for interactive, on-the-
fly machine learning. In: Proceedings of the International Conference on New
Interfaces for Musical Expression. (2009) 280-285

Malloch, J., Sinclair, S., Wanderley, M.M.: Distributed tools for interactive design
of heterogeneous signal networks. Multimedia Tools and Applications (2014) 1-25
Rudraraju, V.: A Tool for Configuring Mappings for Musical Systems using Wire-
less Sensor Networks. Masters thesis, McGill University (2011)

Krajeski, A.H.: A Flexible Tool for the Visualization and Manipulation of Musical
Mapping Networks. Masters thesis, McGill University (2013)

Shneiderman, B.: Designing the User Interface: Strategies for Effective Human-
Computer Interaction. 3rd edn. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (1997)

Wilansky, J.: A Software Tool for Creating and Visualizing Mappings in Digital
Musical Instruments. Masters thesis (2013)

Wang, J., Malloch, J., Chevalier, F., Wanderley, M.: Versioning and Annotation
Support for Collaborative Mapping Design. In: Sound and Music Computing Con-
ference. (2017)

