
Integrating Gesture Data in Computer-Aided

Composition: Paradigms for Representation,

Processing and Mapping

anonymized

Abstract

In this article we discuss physical gestures from the perspective of computer-
aided composition and propose solutions for the integration of gesture signals
as musical materials into these environments. After presenting background
and motivations we review related works and describe design guidelines
for our developments. A particular focus is given to the idiosyncracies of
working with gestures in real-time vs differed-time paradigms. We present
an implementation of our concepts as the library OM-Geste, integrated
into the computer-aided composition environment OpenMusic. Two case
studies are presented for the use of this library for synthesis of symbolic
score and spatial audio from gesture recordings of dance and instrumental
performances.

1 Background and Motivation

1.1 Origins and applications of computer-aided composition

Environments for Computer-Aided Composition (CAC) are traditionally
concerned with the representation and manipulation of symbolic musical
materials, such as notes, rhythms, harmonies, etc. Dating back to the early
experiments of Hiller in the late 1950s [1], composers like Xenakis (1962), or
Koenig (1964), used specialized computer programs for the genesis of musical
structures, mostly implementing combinatoric or probabilistic techniques, in
the tradition of algorithmic composition [2]. Today, the notion of algorithmic
composition can be seen as a subset of CAC which has widened its scope in
the sense of using the computer as a generic tool to develop and interact with
musical ideas using programming languages and formalisms, also referred

1

MMW
Marlon Schumacher & Marcelo M. Wanderley
Pre-publication Draft

Full article published in Journal of New Music Research
Volume 46, Issue 1: Interactive Composition, Pages 87-101, 2017
https://doi.org/10.1080/09298215.2016.1254662

to as “compositional modelling” [3]. With the advent of more powerful
computers and signal processing applications it became possible to introduce
other media and data within computer-aided composition processes which
has led to an extended conception of CAC systems, integrating several
aspects of a work in a single programming framework, such as synthesis
of electronic sounds [4], spatialization [5], and orchestration [6].

Recent trends in cognitive psychology have stressed the importance of
physical interaction for human expression and creativity, see. e.g. the-
ories of enaction [7], embodied cognition [8], or motor-mimetic cognition
[9]. Findings in cognitive linguistics, for instance, indicate that all human
thought, including abstract concepts, are based on conceptual metaphors
and schemes derived from physical experience with the world and that
reasoning is embodied and mostly unconscious [10, 11]. In fact, it has been
argued by anthropologists, that language itself can be regarded as a form
of gesture and that symbolic content and gesture are so tightly interwoven
that very often they cannot be isolated [12]. Cadoz, for instance, stated
that sound portrays indices specifically related to physical gesture, and that
gesture is both concrete and symbolic, thus music composition can be seen
as “...an implicit and indirect composition of the instrumental gesture” [13].
Similar to how sound composition in CAC systems can be carried out using
both abstract and sample-based approaches, we suggest to complement the
generative-algorithmic possibilities for creating musical structures with the
use of recorded, physical gestures.

1.2 Notions of “Gesture”

Since the term “gesture” is often used in ambiguous ways with partially
overlapping and even contradictory meanings [14] it is sensible to precise
our notion of gesture used in this article. Indeed, some researchers consider
the term “gesture” misleading and avoid its use at all [15] — a notion that,
if applied to other research terms, would likely dramatically reduce our
vocabulary. Within our framework, we take a phenomenological viewpoint,
considering gestures as spatio-temporal morphologies1 of physical variables
that can be sensed and represented in the form of digital signals [16]. This
may include sound-producing actions (excitation and modification), ancil-
lary movements (phrasing or entrained movements), sound-accompanying
movements (sound tracing and mimicking), and communicative movements
(gesticulations) [17, 13, 18]. Previous research on integration of sound into
CAC has shown that digital signals can be represented, abstracted into

1The term ”morphology” is used here in the sense of forms or structures.

2

higher-level objects, and embedded into symbolic compositional contexts
[19]. This integration has proven a fruitful direction, leading to interesting
compositional approaches and applications [20, 21].

1.3 State of the Art for Gestures in CAC

Thanks to the proliferation of inexpensive sensing technologies and platforms
in recent years, there is a wide range of possibilities for capturing gestures,
from commercial controllers, to modular plug-and-play systems and custom-
made input devices. A closer look at their use within the field of computer
music, however, reveals a curious dichotomy: although being widely used in
the context of music performance, only recently and sparsely have these tech-
nologies been investigated for compositional purposes and thus, composers
can rarely take advantages of these new technologies [22, 23, 24]. The im-
portance of gesture for human expression seems to be underrepresented and
not reflected appropriately in current computer-aided composition systems.

1.4 Extended Possibilities and Applications

The integration of gesture data within the deferred-time context of computer-
aided composition allows to envisage interesting new scenarios and applica-
tions. For instance, it would allow composers to physically express and
capture their musical ideas using gestural input devices (a historic example
is the UPIC system, discussed in more detail in the next section). Another
example would be the recording of gesture data captured from instrumental
performers, for instance from performances of compositional sketches. Since
gestures carry unique movement characteristics of individual performers,
gesture recordings can serve as materials for the creation of personalized
music materials [25], similar to the practice of composers making use of
recorded sound material from individual performers. In the case of live
musical performance with digital musical instruments (DMIs), it would allow
composers to record gesture data and use these recordings as materials for
the development of other aspects of a piece. The possibility of storage,
representation and arrangement of gesture data might allow the composition
of prescriptive gestural performance scores (describing performer gestures,
rather than the sounding results), and might also be of interest beyond
compositional applications, e.g. for performer studies or instrument design.

3

1.5 Structure of this article

This article is organized as follows: section 2 describes related works and
points out differences between the use of gestural input devices for human-
computer-interaction (HCI) versus gesture signals as materials for com-
position. In section 3 we discuss requirements and design guidelines for
a software tool for representation, processing, and mapping of gestures.
Section 4 will introduce the library OM-Geste and describe its general
functionalities with a particular focus on the concept of mapping in the
context of computer-aided composition. We follow with a validation of our
framework with two case studies, using gesture data captured from dance
and instrumental performances (section 5), before concluding the article
with a discussion (section 6).

2 Related Works

To this date there have been relatively few works involving physical gestures
in the context of CAC. Most developments have focused on freehand drawing
and sketching applications, such as entering control data with a digital
stylus. A historic example is the UPIC 2 system, developed at the “Centre
d’Etudes de Mathématique et Automatique Musicales” (CeMaMu) with
its first prototype in 1977 on a SOLAR mainframe computer [26]. Its
origins date back to the early 1950s while composer Iannis Xenakis was
working on the orchestral piece Metastasis and required graphic notation to
specify continuous transitions in time-pitch space. Technically, UPIC can
be described as a digitizer tablet with a graphical interface connected to a
bank of wavetable oscillators. Envelopes and waveforms could be stored in
memory and arranged into compositions by drawing arcs and lines on the
canvas. In 1987 a version was introduced which allowed controlling sound
synthesis by moving the stylus on the tablet in real time, thus biasing the
system more towards a performance instrument than a compositional tool.
UPIC had a number of successors running on generic hardware, most notably
“Metasynth” [27], “HighC” [28] and “Iannix” [29]. The latter is not bound
to a specific synthesizer and can be regarded as a graphical sequencing and
scripting environment for sending control messages via OpenSoundControl
[30].

Besides these graphical input applications and idiosyncratic approaches,
the field of CAC has been largely isolated from the world of physical gestures.

2UPIC is an acronym for “Unit Polyagogique Informatique du CeMaMu”.

4

More recently, there has been a renewed interest from an HCI perspective,
based on the observation that even computer-literate composers still use
physical means such as pen and paper to sketch their initial creative im-
pulses, thereby reducing cognitive load compared to the use of conventional
computer interfaces [31]. Like their predecessors, these developments are
based on drawing gestures and employ digital styluses and interactive paper
technologies as alternative input devices to the composition environment
[32, 33]. Garcia et al. presented an artistic application, in which historic
musical scores were used as templates which could be re-drawn, thereby
providing gestural data which was streamed/imported into the CAC envi-
ronment [22]. Other applications in this direction include the use of drawing
gestures entered via mobile devices and gaming controllers for specification
of spatialization parameters [34, 24]. These works show interesting new
interaction possibilities, however their focus is on specific applications rather
than a generic framework.

One work which comes closer to our objectives was presented by Ram-
stein and Cadoz [13, 35]. The two main differences are that their system
is intended exclusively for instrumental (i.e. sound-producing) gestures, and
that it did not aim to integrate these data into compositional environments
for producing direct music representations (such as symbolic scores or au-
dio). Nevertheless, a number of aspects related to coding, representation
and manipulation of gestures [36] are addressed, which are relevant for both
our works. The authors use two alternative representations of gesture data,
an internal one and external one: the former is close to the signal and
intended for transmission and storage (i.e. coding). The latter is based on
higher-level descriptors (“gestual attributes”, e.g. sharpness of attack) and
is intended for user manipulation. It is also proposed that representations
should not be fixed, but extendable by the user, for instance by adding new
gestual [sic] attributes. The authors further stress that for compositional
work, a temporal segmentation of continuous data streams into discrete
entities (“gestual events”) is necessary, which we also consider an important
requirement (cf. section 3.2). In terms of user interfaces, different views for
different scales are proposed: a zoomed-in view for editing details of a single
segment (“articulation”), and a zoomed-out view, for comparing multiple
segments and their relationships (“sequence”).

It can be seen that while all of the cited works allow to apply gesture in
compositional contexts, they each focus either on specific types of gestures,
devices or applications, and none of them offers a complete framework
for integrating gestures into symbolic compositional processes. Although
developed in different eras and contexts, there are conceptual similarities

5

between the graphical-input systems in the tradition of UPIC, and the more
recent developments emplyoing advanced sensing and interface technologies.
1) They employ graphical input devices as a means for entering data to
the composition environment. 2) They focus exclusively on drawing ges-
tures, which (as any other human motion) are typified by morphological
characteristics resulting from physical constraints of the mechanical system
performing the gesture [37]. 3) They focus on the “trace” of gestures: taking
the example of a hand drawing on smart paper, the gesture producing the
drawing cannot be recovered from the figure; it can thus not be considered a
representation of the gesture itself, but rather its result or effect. The work
of Ramstein and Cadoz is more similar to ours in that they are interested
in the spatio-temporal morphology of gestures. Their application context,
however, is memorization, treatment and restitution for instrumental per-
formance, rather than its integration as materials for symbolic composition.

3 Design Guidelines

In this section we describe requirements for gesture integration in CAC
and resulting design guidelines for the software library presented later on.
The requirements we identified can be classified into three domains: 1)
description and encoding, 2) abstraction and representation, 3) mapping
and synthesis.

3.1 Description and Coding

A generic framework for composition with gesture materials should allow
users to work with gesture data regardless of sensing device or method
(e.g. motion capture systems, commercial controllers, custom-made input
devices, etc.). According to Luciani et al. gesture data is characterized by
its variable geometric dimensionality (i.e. the dimensionality of the space in
which the gesture evolves) and structural dimensionality (i.e. the functional
organization of degrees-of-freedom) [38]. Ideally, it should be possible to
describe and encode gesture data consistently and coherently, regardless of
dimensionality, type, or resolution. Since these requirements overlap with in-
terests of the musical gesture research community, we can draw from existing
work on the development of gesture description formats, see e.g. [38, 39, 40].
One of these research efforts is the GDIF (Gesture Description Interchange
Format) initiative [15]. Originally intended for description of sound-motion
relationships, it is based on a set of standardized descriptors of variable

6

dimensionality3 and puts forward the idea of structuring gesture data into
multiple heterogenous layers sharing a common timeline. GDIF has been
conceived as a sister format to SDIF (Sound Description Interchange For-
mat) [41] which was originally conceived for storing and exchanging sound
description data. SDIF is based on time-tagged frames containing data
of variable dimensionality, organized into heterogenous streams. It has a
number of useful properties for storing gesture-related data, such as the
possibility of defining new descriptors on the fly, and it has already been
successfully used in our previous computer-aided composition projects for
coding of sound and spatialization data [42, 43]. SDIF is well-suited for the
multi-layered descriptor scheme proposed by GDIF and is supported by a
growing number of computer music environments, including OpenMusic
[42]. Accordingly, we adopt the approach of describing gestures according
to GDIF specifications and using SDIF as the data container [44].

3.2 Representation

In CAC environments, users typically manipulate symbolic representations
rather than concrete low-level data, and consequently, gesture signals need
to be abstracted into higher-level representations in order to be integrated in
compositional processes. We propose a gesture composition system should
provide functionalities for three essential tasks:

• transcoding of low-level sensor signals into higher-level gesture de-
scriptors, e.g. deriving orientation or velocity from accelerometer mea-
surements

• segmentation of continuous data into discrete units that can be
integrated as discrete objects into symbolic compositional processes
[19, 45];

• abstraction of gesture data into symbolic representations, e.g. reduc-
ing a time-domain waveform to a break point function consisting of a
few number of points

Besides functionalities for transcoding, segmentation and abstraction, it
is important to allow for conversions between alternative representations.4

The representation of an underlying domain object (such as gesture data)
determines affordances and provides an interaction context for manipulation

3A list of descriptors can be found online: http://xdif.wiki.ifi.uio.no/Data_types
4See also [46] for a similar discussion on representations of audio signals.

7

http://xdif.wiki.ifi.uio.no/Data_types

[47] which can be strongly dependent on individual composer’s conceptions
and needs.

3.3 Mapping and Synthesis

The ultimate goal of any compositional system is to produce a musical
output, such as a symbolic score, sound or other musical media. While
in CAC this musical output can be directly generated using generative-
algorithmic means, a different approach is manipulating a distinct data set
(such as gesture data) and applying a process of “mapping” to convert this
data set to musical structures or sounds [48].5 While in the design of digital
musical instruments the notion of mapping typically refers to the association
of gesture variables to sound synthesis parameters [50], Chadabe pointed out
limitations of this model as a structural descriptive [51], which according
to Downie, “deflates the awesome power of the algorithmic before it can
appear” [52]. Drawing from Ariza’s taxonomy of CAAC (computer-aided-
algorithmic-composition) systems we consider mapping in a broader sense,
as the conversion of an indirect music representation into a direct music
representation through a formalized process. A direct music representation
is a “linear, literal, or symbolic representation of complete musical events,
an event list (a score in Western notation or a MIDI file) or an ordered
list of amplitude values (a digital audio file or stream)” [2]. Indirect music
representations are non-musical, incomplete, or unordered structures, such
as functions, images, gesture data, etc. With this extended definition, two
particular differences to the instrumental model become apparent.

The first concerns representations of time. A popular notion in the con-
text of DMI design is the systems point of view, conceptualizing a mapping
as an “...out-of-time snapshot of input/output control potential”, similar to
a flow-chart graph which is devoid of temporal representations [53]. While
in applications for real-time performance the relationship between control
variables and synthesis parameters is typically instantaneous (i.e. inputs
are linked to outputs at any given time), the manipulation of time itself is a
distinct property of offline-composition. Consequently, it is a requirement to
integrate temporal specifications as part of a mapping and associate gestures
with musical elements of arbitrary temporal scale and structure.

A second aspect concerns the gesture representation and its interface
exposing variables for mapping. In DMI design it is a common approach to
use multi-layered representations of gesture data, e.g. by converting raw

5Indeed, there are many historic examples for mapping in composition, spanning from medieval
to contemporary music practices [49].

8

sensor measurements into a set of intermediate parameters [54]. These
intermediate parameters may be derived from signal features [55], perceptual
models [56], interaction metaphors [57], etc. and are typically created
in a preliminary stage than the transdomain mapping. The situation in
compositional contexts is different, since semantics of gesture variables might
not be known in advance, and new gesture layers may be developed as part of
the compositional process. This can be related to the notion of the design of
mappings as a tradeoff between simplifying the mapping versus the structure
of the gesture description [18]. Whether complexity is created as part of
the gesture description or the mapping should not be biased through the
system. Rather, it should allow for manipulating both gesture description
and mapping in an integrated workflow.

4 The library OM-Geste

This section presents our implementation of the requirements and design
guidelines described in section 3, as the library OM-Geste for the CAC
environment OpenMusic (OM).6

4.1 Segmentation and Abstraction

4.1.1 Gesture-Array

In OM-Geste, gesture signals are described using the GDIF specification
and imported/exported into the environment via SDIF files (cf. section 3.1).
We developed a new object, called gesture-array, which allows to extract
specific descriptors from an SDIF file and organize them in a hierarchical
structure: The top level of the object consists of a number of gesture-streams,
each representing a gesture descriptor (e.g. 3D position in cartesian coordi-
nates). A gesture-stream consists of a group of substreams, each describing
the evolution of a scalar variable over time (one degree-of-freedom). Figure 1
illustrates the internal structure of a gesture-array containing two gesture-
streams: 3D-position data and absolute velocity.7

As discussed in section 3.2 the continuous data in a gesture-array needs
to be segmented and abstracted into entities which are closer to symbolic
representations that can be integrated into compositional processes. In
compositional environments – conceived as open and neutral systems – the

6OM-Geste is open-source software, available at https://github.com/marleynoe/OM-Geste
7The hierarchical structure of the gesture-array object can be compared to the “internal

representation”, in which units contain channels containing lanes [36].

9

https://github.com/marleynoe/OM-Geste

Figure 1: Structure of a gesture-array object. On the top level, two gesture-
streams representing gesture descriptors (3D Position and Absolute Velocity). Each
gesture-stream consists of a number of substreams.

semantics of gestures and the criteria for segmentation cannot be presup-
posed. For instance, criteria can be based on symbolic information and meta
data which is not contained in the data itself. Moreover, the segmentation of
gesture signals might itself be a compositional parameter. Therefore, rather
than providing pre-defined methods for segmentation, users can determine
a time structure externally (a sequence of temporal locations in seconds)
through arbitrary processes or data, which can then be provided to our
system for segmentation of the gesture signals. Within this framework we
can distinguish three basic approaches:

• external segmentation: based on referential external data, for exam-
ple a media file, meta data, etc.;

• internal segmentation: based on the gesture data itself, for instance
by extracting signal features (e.g. minima of quantity of motion);

• expert segmentation: based on a user-defined procedure (e.g. com-
positional structure or process)

4.1.2 Gesture-Models

We developed a new object, titled gesture-model , which serves as a struc-
tured container for gesture-streams, segmented into temporal units. A gesture-

10

model is built from a gesture-array and a time-structure, i.e. a sequence of
temporal locations. During this process, two operations are carried out:
First, the individual gesture-streams are segmented into temporal units,
titled gesture-segments. Second, the gesture-segments are converted into
OM objects, based on the dimensionality of the descriptor.

Visually, a gesture-model provides a tabulated 2D-interface in which the
OM objects are organized. Rows represent gesture-streams and columns rep-
resent temporal segments. Individual objects can be visualized and edited
through an associated OM graphical editor. Note, that for each gesture-
stream a dedicated inlet/outlet is created through which the corresponding
data can be accessed or modified.

The process of creating a gesture-model object from gesture recordings
is illustrated in Figure 2. Gesture signals are imported from an SDIF
file (a) and converted into a gesture-array object (b). A time-structure
is derived from temporal markers which have been set on the waveform
of a referential audio file (c). The gesture-array is segmented according
to the time structure and a gesture-model is built, containing OM objects
organized into a 2D-table (d). Visible on the right hand side of the Figure
are two graphical editors showing 3D and 1D gesture data.8 Note, that the
transcoding process, i.e. the conversion of gesture-segments into OM objects
is completely invertible. This is an important feature, since depending on the
context it might be desirable to represent gesture materials in different ways
(c.f. section 3.2). It is also possible to re-segment a gesture-model multiple
times, for instance to introduce or extract different temporal structures from
the same gesture recording.

4.2 Manipulation and Processing

Another important functionality is the possibility of associating gesture data
with other musical materials and data in a common structure (cf. sections
3.1, 3.2). This can be useful for including additional streams (e.g. higher-
order descriptors derived from analyses of existing streams), or external
data a user wishes to associate with gesture data. OM-Geste provides
functionalities for extending existing gesture-models wth arbitrary data,
which are automatically synchronized, segmented and integrated into the
tabulated structure of the gesture-model . Figure 3 shows an example for
adding and synchronizing new streams to a gesture-model . First, a gesture-
stream is extracted, its first derivative calculated and the resulting data

8The organization of gesture segments into a larger-scale struture can also be related to the
notion of a “formula” in [36].

11

Figure 2: Segmentation, abstraction, and representation of gesture data in
OM-Geste. (a): gesture data in an SDIF file is extracted into a gesture-array
object (b), visible in the editor on the left. (c): a temporal structure, specified via
markers in an audio file, is used to segment the gesture-array and build a gesture-
model object (d), the individual segments are converted into OM objects, depending
of the dimensionality of the respective gesture descriptor. On the right hand
side: a 3D-trajectory object displayed in its associated editor showing the gesture
trajectory in 3D with its 2-dimensional projections (e), a break point function object
displayed as one-dimensional time-series data in its associated graphical editor (f).

12

added as a new gesture-stream (a). Subsequently, a number of OM objects
(symbolic score, audio file, textual annotations) are supplied as a list and
added as individual streams (b). The resulting gesture-model containing the
new gesture-streams is visible at the bottom (c).

Figure 3: Associating gestures with other musical data in a gesture-model object.
(a): A stream is extracted, its derivative calculated and appended as a new stream
to the gesture-model via the function add-row. (b): A number of OpenMusic
objects (containing a symbolic score, audio file, textual comments) are added as new
streams to the gesture-model . (c): The new streams are automatically segmented
according to the temporal structure of the gesture-model .

Working with sensor measurements often involves carrying out signal
processing operations, such as conditioning the raw data by removing un-
wanted noise and jitter as well as applying other types of processing, e.g.
for extracting higher-order features (see e.g. [58]). To this end, the library

13

provides a toolbox of functions, including FIR/IIR and non-causal filters, al-
gorithms for feature extraction, statistics, data reduction and optimization.
For some of these functions it can be convenient to determine parameter val-
ues empirically by manual tweaking (such as finding adequate filter settings
for smoothing operations). Thanks to the recent “reactive” extension in OM
[59] it is possible to design visual programs which react to user events in real
time. This allows for interactive processing, e.g. to visualize the result of
applying a filter to a gesture signal by moving a slider. It is also possible to
manipulate gesture-models via higher-order functions, for instance to apply
user-defined algorithms (as OM patches or LISP functions) globally or to
selected data fields.

4.3 Mapping as a Program

As discussed in section 3.3 the integration of a mapping system into composi-
tional environments requires a different approach as compared to the design
of digital instruments. In CAC contexts, gesture data, generative processes,
and manual specifications might be interconnected at different levels in
mapping processes and used to specify parameters for objects ranging from
symbolic to signal domains. Accordingly, we developed a mapping system
which implements a consistent approach for setting arbitrary parameters of
any musical object in the environment, independently of structure or scale.

This is realized thanks to advanced programming features in CLOS [60],
which allows designing a mapping as a program, rather than a snapshot
of connections. A mapping therefore benefits from the full expressivity of
the underlying programming environment, including abstraction, recursion,
control structures, etc. From a user’s point of view a mapping is designed
like a standard OM visual program (a patch) with the difference of using
named inputs and outputs in order to access gesture data and set synthesis
parameters. This design leverages existing skills by providing users with
tools and interfaces they are already familiar with. Since mapping programs
are standard patches, users can benefit from any feature provided with
the OM programming interface, such as copy/paste actions, comments,
structuring of subroutines into subpatches, persistent storage, etc. Another
advantage is that the use of a visual programming interface for designing
mappings offers a higher-level, more intuitive approach by de-emphasizing
syntactical issues (as compared to the one-line expressions found in many
current tools), making the mapping task more accessible for non-expert
programmers [61].

Figure 4 shows an example for the use of the mapping system. The three

14

Figure 4: A mapping process as a visual program in OM-Geste. On the left:
A a gesture-model object, B an OM patch defining a mapping program, C the
OM class to produce (chord-seq object). D The function map-gesture performs
the mapping for each segment of the gesture-model and outputs a list of chord-seq
instances. E the instances gathered into a multi-seq object. On the right: The
mapping program (OM patch) to set values for the slots of the chord-seq instances.
Onset times are determined by downsampling the time tags of the gesture-stream
for 3D-position (XPO3) and quantizing the result to a time grid of 200ms (a) .
Pitch is determined by downsampling the values of the gesture-stream for absolute
acceleration (XVEA), and using these for table lookup (b). Durations are indirectly
determined as legato factors, set to a constant value of 100 percent (c). Dynamics
are specified by an algorithm picking a random value between 1 and 127 for each
note (d).

15

main elements are shown on the left hand side of the Figure. A: a gesture-
model object, B: an OM patch defining the mapping program, C: an OM
class specifying the direct music representation to produce (chord-seq object,
i.e. a sequence of chords in linear time notation). The function map-gesture
(D) takes these three elements as input arguments and iterates through
the temporal segments in the gesture-model , producing instances of the
connected OM class with values for its slots specified through the mapping
program. E: The resulting chord-seq instances are gathered together and
displayed in a multi-seq object at the bottom of the Figure.

On the right-hand side is a detailed view of the mapping patch “hy-
brid specs”, in which gesture data, symbolic specifications, literals, and
algorithms are used for setting parameters of chord-seq instances (each
containing 25 notes). Inputs (top) are named to specify the gesture-streams
in the gesture-model to access, and outputs (bottom) are named to specify
the slots (parameters) of the chord-seq instance to set. Onset times and
pitches of notes, are derived by sampling discrete values from gesture-streams
and using these for subsequent temporal processing (quantization) and table
lookup, to determine the final values. Durations of notes are specified
through a literal value (a value of 100 for legato means, every note will
last until the onset of the following note). Finally, dynamics of the notes
are determined through a random process.

4.4 Rendering of Gesture Descriptions

An alternative scenario for the use of OM-Geste is an environment for ges-
ture visualization, editing/processing, and possibly restitution (see e.g. [13,
35]). We developed functionalities which allow to convert a gesture-model
into an SDIF-buffer object, i.e. a structure of SDIF type definitions and
frames according to the GDIF specification. This object can then be ex-
ported to disk as an SDIF file, using the standard tools provided in Open-
Music. These files can for instance be interchanged with other environments
and possibly used for real-time streaming (see [43] for a similar approach for
spatialization data).

5 Case Studies

In this section we describe two case studies for synthesis of direct music
representations from real-world gesture recordings. Music-related gestures
can be roughly divided into two groups: gestures of those that perceive

16

the sound (listener or dancer gestures) versus gestures of those that pro-
duce the sound (performer gestures) [62]. In our first study, we will use
gesture recordings of a dance performance for the creation of a symbolic
musical score. The second will use gesture data from a DMI performance
for rendering of a spatial sound synthesis process. Video recordings of the
captured performances (dance and DMI) are available online.9 For both
case studies we used the same workflow, i.e. import of gesture data from
SDIF files, processing and segmentation of gesture-models, and mapping
for synthesis of direct music representations. We designed the mapping
programs aiming at “gestural coherence”, i.e. a perceivable relationship
between the performer’s effort and the energetic morphology in the sound
[63]. The temporal scale of the produced musical outputs was kept the same
as in the original gesture capture, which allows to synchronize the produced
direct music representation to the video recording of the performance and
validate the gestural coherence between movement and sound.

5.1 Dance Performance

5.1.1 Acquisition

For our first example we used the recording of a dance performance originally
choreographed by Isabelle van Grimde as part of the collaborative research-
creation project Les Gestes carried out by McGill University and the dance
company Van Grimde Corps Secrets [64]. This project involved two dancers,
two instrumental performers (Violin and Cello), and a family of custom-built
physical controllers that could be attached to the body – inspired by the
idea of creating a virtual quartet in which dancer gestures influence sound
processing of acoustic instruments in real time. One of the controllers is a
visor-like device, which transmits data from an embedded 3-axis accelerom-
eter wirelessly to a central computer. Figure 5 shows dancer Sophie Breton
wearing the Visor device, during the gesture capture performance.

5.1.2 Processing and Segmentation

The recorded data was imported from an SDIF file and smoothed (using b-
spline interpolation) before further processing to derive additional descrip-
tors for 3D-orientation and magnitude of the derivative of 3D-acceleration
(jerk). The descriptors were gathered together with the original sensor
measurements into a gesture-model .

9http://tinyurl.com/Dance-DMI-original

17

http://tinyurl.com/Dance-DMI-original

Figure 5: Video frame showing Sophie Breton wearing the Visor during the
captured dance performance in Pollack Hall of McGill University. Video by
Audréane Beaucage. Used with permission.

Since for the dance performance no referential media or meta informa-
tion was available, segmentation was determined via analysis of the gesture
signals themselves (“internal segmentation”, cf. section 3.2): a peak-finding
function (laplacian edge detection) was used to detect troughs in the ac-
celeration data and the respective temporal locations were used as a time-
structure.10

5.1.3 Mapping

The mapping process is shown in Figure 6. For this example we used the
same direct music representation (chord-seq object) as described in sec-
tion 4.3. Visible at the top left of the figure is the gesture-model containing
the segmented gesture signals from the dance performance. The right hand
side of the figure shows the mapping program with two inputs for accessing
data of the gesture-streams XAA1 (jerk magnitude, a) and XAA1-ema (the
same descriptor smoothed with an exponential-moving-average filter, b). A
number of OM functions are used for sampling and scaling descriptor values
into useful ranges to specify parameters for the generation of 25 discrete
notes per temporal segment (see caption of the figure for more detailed
description). Using this mapping program, the function map-gesture creates
a chord-seq object for each segment of the gesture-model and outputs a list
of instances, which are then merged into a single object (D). This chord-seq
object is then converted into a voice object (a sequence of chords with a
metric representation) thereby quantizing the temporal location of chords
in linear time into a metric structure (E).11 The final score is visible in detail

10Troughs in acceleration data can be indicative of points of demarcation between gestures [65].
11OM’s default quantization algorithm groups notes within a time window of 100 ms into chords

18

Figure 6: Mapping process for synthesis of a symbolic musical score from
dance gestures. A: the gesture-model containing gesture data from the dance
performance, B: a mapping program as an OM patch, C: the OM class to be
produced for each segment (chord-seq). Right: Detailed view of the mapping
patch, specifying parameters for 25 discrete notes per segment. Jerk magnitude
(XAA1, a) is downsampled and rescaled into a range from 3600 to 8400 to specify
pitch in midicent (lmidic, c). Lowpass-filtered jerk magnitude (XAA1-ema, b)
is downsampled and the time tags of the values are used to specify onset times
(lonset, d). The values are exponentially scaled into a range from 1 to 120 to
specify dynamics as MIDI velocities (lvel, e). D: the resulting chord-seq objects are
merged together into a single object and converted into a voice object with metric
rhythmic time notation. E: a detailed view of the final symbolic score (grayscales
represent dynamics) is visible at the bottom.

19

at the bottom of the figure (grayscales represent dynamics). We rendered
a MIDI synthesis of the score and overlaid the audio to the original video
recording of the dance performance. The resulting video file is available
online.12

5.2 DMI Performance

5.2.1 Acquisition

Our second case study is based on gesture recordings of a performance with a
DMI, titled SoundSaber. This instrument uses a Motion Capture (MoCap)
system to sense the position of the tip of a 120cm long pvc tube. From
this position measurement other motion descriptors are derived and used
to drive a real-time sound synthesizer (see [66] for detailed description).
For this example we use gesture data of an excerpt of an improvisational
performance. Figure 7 shows K. Nymoen with the SoundSaber instrument
at University of Oslo’s FourMS laboratory.

Figure 7: The SoundSaber DMI. Left: Kristian Nymoen wearing optical markers
during a performance with the instrument. Right: close-up of the controller (tip of
the pvc tube) showing marker placement. Used with permission.

5.2.2 Processing and Segmentation

Complementary to the previous case study, where an abstract score consist-
ing of discrete note events was generated, here we will produce a concrete
multichannel soundfile containing synthesized spatial audio. Since in this
case the gesture data was recorded synchronously with synthesized audio, it
can serve as referential data to be used for “external” segmentation of the

12http://tinyurl.com/Dance-mapping

20

http://tinyurl.com/Dance-mapping

gesture-streams (cf. section 4.1). Accordingly, both audio and gesture data
was imported into OM and the visual representation of the audio waveform
was used to manually determine points of minimal amplitude13 which were
used to specify temporal locations for segmenting the gesture signals.

5.2.3 Mapping

For synthesis of spatial sound in OM we used the libraries OMchroma
and OMprisma. OMchroma is a framework for sound synthesis based
on Marco Stroppa’s Chroma system [67]. Classes dedicated to various
sound synthesis algorithms can be instantiated to devise sound synthesis
processes which are rendered via the Csound language [68]. OMprisma
is a library which implements the same control structures and provides
an object-oriented system of classes for spatial sound rendering, sharing
a consistent control interface [69]. Combining the two libraries, classes for
sound synthesis, processing and spatialization can be merged into single
hybrid structures and controlled in an integrated process (see [5] for more
detailed description).

For illustrative purposes we based our mapping choices on the same
considerations of action-sound relationships as in the original instrument
design, e.g. establishing a correlation between kinetic energy and sound
energy [66].14 Figure 8 shows the visual program for the mapping and
synthesis process. At the top we see the gesture-model containing the
recorded gesture data of the DMI performance. A: The class-merging process
for defining the spatial sound synthesis class is visible on the right hand side
of the figure. B: combining an FM synthesizer with a resonant bandpass
filter and a spatialization module for reverberated VBAP (rVBAP) [70]. C:
On the left hand side of the figure we see the mapping program, applied
to each segment of the gesture-model . Note, the combination of specifi-
cations (literal, symbolic, functional) used in the mapping program. (a):
global temporal parameters, such as onset time (action-time) and duration
(durs) of each synthesis event correspond to the original gesture segments,
extracted from the descriptor for 3D-position (XP30). (b): the spatialization
data for rVBAP is specified as a many-to-one mapping: XP30 is first
multiplied by a constant (traj-mult), before being multiplied with the vector
magnitude of acceleration (XVA0). The function traj-separ dispatches the

13In the original mapping for the recording, audio amplitude correlates with absolute velocity
of the SoundSaber’s tip.

14Note, that this choice of mapping is arbitrary and is intended to validate the faithfulness of
our synthesis by overlaying the video recording DMI performance with the audio produced in OM.

21

Figure 8: Controlling a spatial sound synthesis process via DMI performance
data. On the right: A) gesture-model containing recorded MoCap data of a
DMI performance. B) definition of a class for spatial sound synthesis, combining
FM synthesis, resonant filtering and rVBAP spatialization. C) mapping program
for driving the spatial sound synthesis process, shown in detail on the left hand
side. (a): specification of global temporal parameters from gesture data, (b):
specification of spatialization data combining 3D-position and absolute acceleration,
(c): specification of FM synthesis parameters using constants, envelopes, gesture
descriptors, (d): control of center-frequency of bandpass-filter by combining
absolute acceleration and jerk.

22

scaled 3-dimensional data into individual envelopes for x and y coordinates,
describing position in the horizontal plane. (c): the first two parameters for
the FM synthesis are specified as a constant value for carrier frequency (f0)
and as a triangular envelope for modulation index (ienv) – note, that these
are global specifications for every event, independently of the gesture data.
The shape and the maximum value of the amplitude envelope (aenv and
amp) corresponds to the shape of XVA0 and its maximum value. (d): the
center-frequency of the bandpass filter is controlled by normalizing the values
describing magnitude of jerk (XVA1) into a range from 0-1 (traj-scale),
multiplying it with XVA0, before multiplying it times 1500 into a useful
range for controlling the center-frequency of the bandpass filter (center-
frequency-env). The audio resulting from synthesis process was rendered into
a stereo file and added to the original video recording of the performance.
The video file is available online.15

We chose these two examples as case studies in order to validate the flex-
ibility of our framework by using examples that differ significantly in terms
of types of gestures, acquisition context, gesture data, mapping approach,
and direct music representation. An overview of these differences is given in
table 1.

Parameter Dance choreography DMI performance

Sensing Device Visor SoundSaber

Sensing Method IMU MoCap

Measurement reference egocentric exocentric

Temporal resolution 16.7 Hz 200 Hz

Numerical resolution 10 Bit 32 Bit

Referential Data — audio recording

Mapping scheme one-to-many hybrid

Music Representation symbolic score spatial sound synthesis

Table 1: Comparison of the two case studies.

6 Discussion and Future Work

In this article we presented a system for integrating physical gestures as
musical materials into the symbolic domain of computer-aided composition.

15http://tinyurl.com/DMI-mapping

23

http://tinyurl.com/DMI-mapping

We reviewed related works, described requirements for description, repre-
sentation, and mapping, and presented an implementation of our concepts
in the library OM-Geste. To validate the flexibility of our framework we
described two case studies for the use of dance and instrumental gestures
for synthesis of a symbolic musical score and spatial audio.

A particular focus of was given to the concept of mapping for CAC
applications. While in the context of instrumental performance mapping
is commonly understood as the association of gesture variables to sound
synthesis parameters, the notion of mapping in composition typically has a
wider scope, for example as the correlation of data sets, the “connection
between structures, or gestures and audible results in a musical perfor-
mance”, or even more abstract, as “an idea in one domain being manifested
in another” [49]. To address this extended conception we designed a system
which is seamlessly integrated into the OM interface using existing tools and
interfaces, and in which mappings are conceived as visual programs which al-
low for hybrid specifications, combining generative-algorithmic approaches,
gesture data, and manual setting.

Note, that the presented framework does not attempt to solve compo-
sitional problems pertaining to relationships between gestures and music
materials. Rather, our aim is to provide open and generic tools that allow
composers to develop and experiment with individual artistic concepts, and
which may help reintroducing physical expression into computer-aided com-
position. The first author found that in particular for complex processes
requiring large amounts of control data (such as spatial sound synthesis
[5]), the organic, multi-dimensional nature of gestures combined with the
extended mapping possibilities in CAC are promising directions.

Future work will investigate strategies for simultaneous, alternative rep-
resentations of gestures (similar to multiple “views”) as well as flexible data
structures which allow for multiple simultaneous segmentations. Another
direction we are exploring is the integration of machine learning techniques,
both in order to develop tools for segmentation and recognition, as well
as implicit mapping strategies. The integration of gesture data is part of
a recent trend exposing the programming features and expressivity of CAC
environments as components within larger-scale systems, towards combining
algorithmic-generative approaches with interactive applications.

24

Acknowledgements

We would like to express our thanks to Kristian Nymoen and Sophie Breton
for sharing data of their performances. Thanks to Sean Ferguson for insight-
ful discussions and to Isabelle van Grimde for permission to use excerpts of
her choreography. The first author would like to thank Jean Bresson for
support with the design and implementation of the library. This research
was partially funded by an NSERC discovery grant to the second author.

References

[1] L. Hiller and L. Isaacson, “Musical composition with a high-speed
digital computer,” Journal of the Audio Engineering Society, vol. 6,
no. 3, pp. 154–160, 1958. (Cited on page 1)

[2] C. Ariza, “Navigating the Landscape of Computer-Aided Algorithmic
Composition Systems: A Definition, Seven Descriptors and a Lexicon of
Systems and Research,” in International Computer Music Conference,
Barcelona, Spain, 2005, pp. 765–772. (Cited on pages 1 and 8)

[3] G. Assayag, “Computer Assisted Composition today,” in First Sym-
posium on Music and Computers. Corfu Greece, Oct. 1998.
(Cited on page 2)

[4] J. Bresson, M. Stroppa, and C. Agon, “Generation and Representation
of Data and Events for the Control of Sound Synthesis,” in Sound and
Music Computing Conference, Lefkada, Greece, 2007. (Cited on page 2)

[5] M. Schumacher and J. Bresson, “Spatial Sound Synthesis in Computer-
Aided Composition,” Organised Sound, vol. 15, no. 03, pp. 271–289,
Dec. 2010. (Cited on pages 2, 21, and 24)

[6] G. Carpentier and J. Bresson, “Interacting with Symbol, Sound, and
Feature Spaces in Orchidée, a Computer-Aided Orchestration Environ-
ment,” Computer Music Journal, pp. 1–18, Feb. 2010. (Cited on page 2)

[7] G. Essl and S. O’Modhrain, “Enaction in the Context of Musical
Performance,” Interdisciplines virtual workshop (by participants in
Enactive interfaces Network), 2004. (Cited on page 2)

[8] F. J. Varela, E. Thompson, and E. Rosch, The Embodied Mind:
Cognitive Science and Human Experience. The MIT Press, 1992.
(Cited on page 2)

25

[9] R. I. Godøy, “Motor-Mimetic Music Cognition,” Leonardo, vol. 36,
no. 4, pp. 317–319, Jan. 2003. (Cited on page 2)

[10] D. Geeraerts and H. Cuyckens, The Oxford handbook of cognitive
linguistics. Oxford University Press, USA, 2007. (Cited on page 2)

[11] G. Lakoff and M. Johnson, Philosophy in the Flesh. New York: Basic
Books, 1999. (Cited on page 2)

[12] D. F. Armstrong, W. C. Stokoe, and S. E. Wilcox, Gesture and the Na-
ture of Language. Cambridge University Press, 1995. (Cited on page 2)

[13] C. Cadoz, “Instrumental Gesture and Musical Composition,” in
International Computer Music Conference. San Francisco, USA:
Proceedings of the 1998 International Computer Music . . . , 1988, pp.
1–12. (Cited on pages 2, 5, and 16)

[14] C. Cadoz and M. M. Wanderley, “Gesture-Music,” in Trends in
Gestural Control of Music. Ircam—Centre Pompidou, 2000, pp. 71–93.
(Cited on page 2)

[15] A. Jensenius, “Action-sound: Developing Methods and Tools to Study
Music-related Body Movement,” Ph.D. dissertation, Department of
Musicology, University of Oslo, July 2007. (Cited on pages 2 and 7)

[16] M. M. Wanderley, “Interaction Musicien-Instrument: Application au
contrôle gestuel de la synthèse sonore,” Ph.D. dissertation, 2001.
(Cited on page 2)

[17] F. Delalande, “Le Geste, outil d’analyse: quelques enseignements d’une
recherche sur la gestique de Glenn Gould,” 1988. (Cited on page 2)

[18] M. M. Wanderley and P. Depalle, “Gestural Control of Sound Synthe-
sis,” in Proceedings of the IEEE, 2004, pp. 632–644. (Cited on pages 2

and 9)

[19] J. Bresson and C. Agon, “Musical Representation of Sound in
Computer-Aided Composition: A Visual Programming Framework,”
Journal of New Music Research, vol. 36, no. 4, pp. 251–266, Dec. 2007.
(Cited on pages 3 and 7)

[20] C. Agon, G. Assayag, and J. Bresson, Eds., The OM Composer’s Book:
Volume 1, ser. Collection Musique/Sciences. Éditions Delatour France,
2006. (Cited on page 3)

26

[21] J. Bresson, C. Agon, and G. Assayag, Eds., The OM Composer’s Book:
Volume 2, ser. Collection Musique/Sciences. Éditions Delatour France,
2008. (Cited on page 3)

[22] J. Garcia, P. Leroux, and J. Bresson, “pOM: Linking Pen Gestures
to Computer-Aided Composition Processes,” in 40th International
Computer Music Conference (ICMC) joint with the 11th Sound &
Music Computing conference (SMC), Athens, Greece, 2014. (Cited

on pages 3 and 5)

[23] J. Garcia, J. Bresson, and T. Carpentier, “Towards Interactive Author-
ing Tools for Composing Spatialization,” in IEEE 10th Symposium on
3D User Interfaces, Arles, France, Mar. 2015. (Cited on page 3)

[24] J. Garcia, J. Bresson, M. Schumacher, T. Carpentier, and X. Favory,
“Tools and Applications for Interactive-Algorithmic Control of Sound
Spatialization in OpenMusic,” in inSONIC2015, Aesthetics of Spatial
Audio in Sound, Music and Sound Art, 2015. (Cited on pages 3 and 5)

[25] M. M. Wanderley, B. Vines, N. Middleton, C. Mckay, and W. Hatch,
“The Musical Significance of Clarinetists’ Ancillary Gestures: An
Exploration of the Field,” Journal of New Music Research, vol. 34,
no. 1, pp. 97–113, June 2005. (Cited on page 3)

[26] G. Marino, M. Serra, and J. Raczinski, “The UPIC system: Origins and
innovations,” Perspectives of New Music, vol. 31, no. 1, pp. 258–269,
1993. (Cited on page 4)

[27] E. Wenger. (1997) Metasynth. [Online]. Available: http://www.ircam.
fr/produits-real/logiciels/metasynth-e.html (Cited on page 4)

[28] HighC. [Online]. Available: http://highc.org/ (Cited on page 4)

[29] T. Coduys and G. Ferry, “IanniX. Aesthetical/symbolic visualisations
for hypermedia composition,” in Sound and Music Computing Confer-
ence, Lefkada, Greece, 2004. (Cited on page 4)

[30] M. Wright, A. Freed, and A. Momeni, “OpenSound Control: state of
the art 2003,” Proceedings of the 2003 conference on New interfaces for
musical expression, pp. 153–160, 2003. (Cited on page 4)

[31] T. Coughlan and P. Johnson, “Interaction in Creative Tasks: Ideation,
Representation and Evaluation in Composition,” in SIGCHI Confer-

27

http://www.ircam.fr/produits-real/logiciels/metasynth-e.html
http://www.ircam.fr/produits-real/logiciels/metasynth-e.html
http://highc.org/

ence on Human Factors in Computing Systems. Montreal, Canada:
CHI 2006, 2006. (Cited on page 5)

[32] W. Mackay, “Designing Interactive Paper: Lessons from three
Augmented Reality Projects,” in Proceedings of IWAR, 1999.
(Cited on page 5)

[33] J. Garcia, T. Tsandilas, and C. Agon, “Interactive Paper Substrates to
Support Musical Creation,” in SIGCHI Conference on Human Factors
in Computing Systems, Austin, USA, 2012. (Cited on page 5)

[34] J. Garcia, J. Bresson, and T. Carpentier, “Towards interactive au-
thoring tools for composing spatialization.” 3DUI, pp. 151–152, 2015.
(Cited on page 5)

[35] C. Ramstein, “Analyse, Représentation et Traitement du Geste In-
strumental,” Ph.D. dissertation, Institut National Polytechnique de
Grenoble, 1991. (Cited on pages 5 and 16)

[36] C. Cadoz and C. Ramstein, “Capture, representation, and ”composi-
tion” of the instrumental gesture,” in International Computer Music
Conference, Glasgow, Scotland, 1990, pp. 53–56. (Cited on pages 5, 9,

and 11)

[37] F. Lacquaniti, C. Terzuolo, and P. Viviani, “The law relating the kine-
matic and figural aspects of drawing movements,” Acta psychologica,
1983. (Cited on page 6)

[38] A. Luciani, M. Evrard, D. Couroussé, N. Castagné, C. Cadoz, and
J.-L. Florens, “A basic gesture and motion format for virtual reality
multisensory applications,” Conference on Computer Graphics Theory
and Applications, 2006. (Cited on page 6)

[39] D. McGilvray, “On The Analysis of Musical Performance by
Computer,” Ph.D. dissertation, University of Glasgow, 2007.
(Cited on page 6)

[40] A. Camurri, P. Coletta, G. Varni, and S. Ghisio, “Developing Multi-
modal Interactive Systems with EyesWeb XMI.” in Conference on New
Interfaces for Musical Expression, New York, USA, 2007, pp. 305–308.
(Cited on page 6)

28

[41] M. Wright, A. Chaudhary, A. Freed, D. Wessel, X. Rodet, D. Virolle,
R. Woehrmann, and X. Serra, “New applications of the sound descrip-
tion interchange format,” in International Computer Music Conference,
Ann Arbor, USA, 1998. (Cited on page 7)

[42] J. Bresson and C. Agon, “SDIF Sound Description Data Representation
and Manipulation in Computer Assisted Composition,” in International
Computer Music Conference, Miami, USA, Nov. 2004, pp. 520–527.
(Cited on page 7)

[43] J. Bresson and M. Schumacher, “Representation and interchange of
sound spatialization data for compositional applications,” in Interna-
tional Computer Music Conference, Huddersfield, UK, 2011. (Cited on

pages 7 and 16)

[44] K. Nymoen and A. R. Jensenius, “A Toolbox for Storing and Streaming
Music-Related Data,” in Sound and Music Computing Conference,
Padova, Italy, 2011, pp. 1–4. (Cited on page 7)

[45] J. Bresson, “Sound Processing in OpenMusic,” in 9th International
Conference on Digital Audio Effects, Montreal, Canada, 2006, pp. 325–
330. (Cited on page 7)

[46] M. Schumacher, “Ab-Tasten: Atomic Sound Modeling with a
Computer-Controlled Acoustic Grand Piano,” in The OM Composer’s
Book: Volume 3, J. Bresson, G. Assayag, and C. Agon, Eds. Éditions
Delatour, IRCAM/Centre Pompidou, 2016. (Cited on page 7)

[47] M. Beaudouin-Lafon, “Instrumental interaction: an interaction model
for designing post-WIMP user interfaces,” in SIGCHI Conference on
Human Factors in Computing Systems. The Hague, Netherlands:
ACM, 2000, pp. 446–453. (Cited on page 8)

[48] P. Doornbusch, “Composers’ views on mapping in algorithmic composi-
tion,” Organised Sound, vol. 7, no. 02, p. 12, Aug. 2002. (Cited on page 8)

[49] ——, “Mapping in Algorithmic Composition and Related Practices,”
Ph.D. dissertation, RMIT University, Victoria, 2010. (Cited on pages 8

and 23)

[50] E. R. Miranda and M. M. Wanderley, New Digital Musical Instruments:
Control and Interaction Beyond the Keyboard. AR Editions, Inc, 2006,
vol. 21. (Cited on page 8)

29

[51] J. Chadabe, “The Limitations of Mapping as a Structural Descriptive in
Electronic Instruments,” in Conference on New Interfaces for Musical
Expression, Dublin, Ireland, 2002, pp. 197–201. (Cited on page 8)

[52] M. N. Downie, “Choreographing the extended agent: performance
graphics for dance theater,” Ph.D. dissertation, Massachusetts Institute
of Technology, 2005. (Cited on page 8)

[53] D. Van Nort, M. M. Wanderley, and P. Depalle, “Mapping Control
Structures for Sound Synthesis: Functional and Topological Perspec-
tives.” Computer Music Journal, vol. 38, no. 3, pp. 6–22, 2014.
(Cited on page 8)

[54] M. M. Wanderley, N. Schnell, and J. Rovan, “Escher - Modeling and
Performing ”Composed Instruments” in Real-Time,” in IEEE Interna-
tional Con- ference on Systems, Man and Cybernetics (SMC’98). San
Diego, USA: IEEE, 1998, pp. 1080–1084. (Cited on page 9)

[55] J. Malloch and M. M. Wanderley, “The T-Stick: From musical interface
to musical instrument,” in Conference on New Interfaces for Musical
Expression, New York, USA, 2007. (Cited on page 9)

[56] D. Arfib, J. M. Couturier, L. Kessous, and V. Verfaille, “Strategies of
mapping between gesture data and synthesis model parameters using
perceptual spaces,” Organised Sound, vol. 7, no. 02, pp. 127–144, Aug.
2002. (Cited on page 9)

[57] D. Wessel and M. Wright, “Problems and Prospects for Intimate
Musical Control of Computers,” Computer Music Journal, pp. 11–22,
Oct. 2002. (Cited on page 9)

[58] J. Malloch, S. Sinclair, and M. Schumacher. Digital Orchestra Toolbox
for MaxMSP. [Online]. Available: http://www.idmil.org/software/
digital orchestra toolbox (Cited on page 14)

[59] J. Bresson, “Reactive Visual Programs for Computer-Aided Mu-
sic Composition,” in IEEE Symposium on Visual Languages and
Human-Centric Computing, Melbourne, Australia, 2014, pp. 141–144.
(Cited on page 14)

[60] R. Gabriel, J. White, and D. Bobrow, “CLOS: Integrating Object-
Oriented and Functional Programming,” Communications of the ACM,
vol. 34, no. 9, pp. 29–38, 1991. (Cited on page 14)

30

http://www.idmil.org/software/digital_orchestra_toolbox
http://www.idmil.org/software/digital_orchestra_toolbox

[61] J. Bresson, C. Agon, and G. Assayag, “Visual Lisp/CLOS programming
in OpenMusic,” Higher-Order and Symbolic Computation, vol. 22, no. 1,
pp. 81–111, Dec. 2009. (Cited on page 15)

[62] A. R. Jensenius, M. M. Wanderley, R. I. Godøy, and M. Leman,
“Musical Gestures: Concepts and Methods in Research,” in Musical
gestures: Sound, movement, and meaning, R. I. Godøy and M. Leman,
Eds. Routledge, 2010. (Cited on page 16)

[63] M. Goldstein, S. Studio, and M. Park, “Gestural coherence and musical
interaction design,” Systems, 1998. (Cited on page 17)

[64] J. Malloch, I. Hattwick, M. Schumacher, A. Picciacchia, M. M.
Wanderley, S. Ferguson, I. Van Grimde, S. Breton, S. Trougakos,
and P. Bassani. Les Gestes / Gestures. [Online]. Available:
http://www.idmil.org/projects/gestes (Cited on page 17)

[65] F. Bevilacqua, J. Ridenour, and D. J. Cuccia, “3D Motion Cap-
ture Data: Motion Analysis and Mapping to Music,” in work-
shop/symposium on sensing and input for media-centric systems. Cite-
seer, 2002. (Cited on page 18)

[66] K. Nymoen, S. A. v. D. Skogstad, and A. R. Jensenius, “Soundsaber-
a motion capture instrument,” in Conference on New Interfaces for
Musical Expression, Oslo, Norway, 2011. (Cited on pages 20 and 22)

[67] C. Agon, J. Bresson, and M. Stroppa, “OMChroma: Compositional
Control of Sound Synthesis,” Computer Music Journal, vol. 35, no. 2,
pp. 67–83, May 2011. (Cited on page 21)

[68] J. Fitch, V. Lazzarini, and S. Yi, “Csound6: old code renewed,” in
Linux Audio Conference, Graz, Austria, 2013, p. 69. (Cited on page 21)

[69] M. Schumacher and J. Bresson, “Compositional Control of Peri-
phonic Sound Spatialization,” in 2nd International Symposium on
Ambisonics and Spherical Acoustics. Paris, France: Citeseer, 2010.
(Cited on page 21)

[70] O. Mathes. RVBAP = Reverberated VBAP. [Online].
Available: http://impala.utopia.free.fr/pd/patchs/externals libs/
vbap/rvbap.pdf (Cited on page 22)

31

http://www.idmil.org/projects/gestes
http://impala.utopia.free.fr/pd/patchs/externals_libs/vbap/rvbap.pdf
http://impala.utopia.free.fr/pd/patchs/externals_libs/vbap/rvbap.pdf

	Background and Motivation
	Origins and applications of computer-aided composition
	Notions of ``Gesture''
	State of the Art for Gestures in CAC
	Extended Possibilities and Applications
	Structure of this article

	Related Works
	Design Guidelines
	Description and Coding
	Representation
	Mapping and Synthesis

	The library OM-Geste
	Segmentation and Abstraction
	Gesture-Array
	Gesture-Models

	Manipulation and Processing
	Mapping as a Program
	Rendering of Gesture Descriptions

	Case Studies
	Dance Performance
	Acquisition
	Processing and Segmentation
	Mapping

	DMI Performance
	Acquisition
	Processing and Segmentation
	Mapping

	Discussion and Future Work

