FROM CONTROLLER TO SOUND: TOOLS FOR COLLABORATIVE
DEVELOPMENT OF DIGITAL MUSICAL INSTRUMENTS

Joseph Malloch, Stephen Sinclair, and Marcelo M. Wanderley
Input Devices and Music Interaction Laboratory
Centre for Interdisciplinary Research in Music Media and Technology
McGill University — Montreal, QC, Canada
joseph.malloch@mcgill.ca, sinclair@music.mcgill.ca,
marcelo.wanderley @mcgill.ca

1. ABSTRACT

This paper describes the design and implementation of a
system for collaborative development of a digital musical
instrument mapping layer. System development included
the design of a decentralized network for the management
of peer-to-peer data connections using Open Sound Con-
trol. A graphical user interface for dynamically creating,
modifying, and destroying mappings between control data
streams and synthesis parameters is presented.

2. INTRODUCTION

Although designers of Digital Musical Instruments (DMI)
are interested in creating useful, flexible, and creatively-
inspiring interfaces and sounds, this process often depends
on the vision and insight of a single individual. The
McGill Digital Orchestra project instead brings together
research-creators and researchers in performance, com-
position and music technology to work collaboratively in
creating tools for live performance with digital technology
[1]. A large part of this research focuses on developing
new musical interfaces. !

In the process of creating instruments for this project,
we have found ourselves faced with the unique challenge
of mapping new instruments in collaboration with ex-
perienced performers, as well as with composers tasked
with writing pieces for these instruments. Because this
ambitious project has taken on these three main chal-
lenges of the digital performance medium simultane-
ously, we have found ourselves in need of tools to help
optimize the process. Specifically, mapping the vari-
ous streams of controller output to the input parame-
ters of synthesis engines has presented us with situa-
tions where both ease of use and flexibility were both of
the utmost importance. We needed to be able to mod-
ify connections between data streams during precious
engineer-composer-performer meeting time, while mini-

I'The McGill Digital Orchestra is a research/creation project sup-
ported by the Appui a la recherche-création program of the Fonds de
recherche sur la société et la culture (FQRSC) of the Quebec govern-
ment, and will culminate with concert performances of new works dur-
ing the 2008 MusiMars/MusiMarch Festival in Montréal.

mizing wasted minutes “reprogramming” our signal pro-
cessing routines. Although arguably both powerful and
intuitive, even the graphical environment provided by
Max/MSP did not seem appropriate for these purposes,
because non-programmers who had limited familiarity
with such tools were expected to help in experimentation
and design.

In consideration of several ongoing projects, includ-
ing GDIF [7], Jamoma [10], Integra [2], and OpenSound
Control (OSC) [13], we have created a “plug and play”
network environment. Controllers and synthesizers are
able to announce their presence and make their input and
output parameters available for abitrary connections, ne-
gotiated using a graphical mapping tool implemented in
Max/MSP. Any controller is able to connect to any synthe-
sizer “on the fly,” while performing data scaling, clipping,
and other operations.

In the course of developing an adequate working en-
vironment for this project, we have made developments
in three main areas: the design of a network architecture
which lends itself to a distributed “orchestral neighbour-
hood”, in which controllers and synthesizers can interface
with each other over the Max/MSP or UDP/IP buses by
means of an OSC-controlled arbitrator; the creation of
a “toolbox” containing many useful functions which we
found ourselves using repeatedly, coded as Max/MSP ab-
stractions; and lastly a graphical mapping tool with which
gestural data streams can be dynamically connected and
modified.

We have tried to create a GUI that is intuitive and trans-
parent: relationships between parameters are visible at a
glance, and changing mappings and scaling requires only
a few mouse clicks. We have used all of these tools in a
real collaborative context, allowing us to present not only
implementations, but also observations of their effect on
our group dynamic and workflow. We have tried to create
an interface that is useful not only for technical users, but
also as a creative tool for composers and performers.

3. GESTURAL MAPPING

The digital instrument builder is faced with several tasks:
after considering what sensors should be used, how the

First Mapping Second Mapping Third Mapping
Layer (Technical) Layer (Semantic) Layer (Technical)

4 / s
12 0n s
&2 O » Q
o = Qo @
5 —7 | 5 2 £
-—> £ o c
g 5] £ &
o \ % 0 > '?,;
©° “ e} ‘O
£ 2 5 o
= ~a Z 3 /v £
© © K \ 2
— R

Figure 1. A diagram of the 3-layer framework used for
Digital Orchestra development, adapted from [4].

musician will likely interface with them, and what sounds
the instrument will make, there is still the decision of
which sensors should control which aspects of the sound.
This task, known as mapping , is an integral part of the
process of creating a new musical instrument [6].

3.1. The Semantic Layer

An important result of previous discussions on mapping
has been the acknowledgement of the need for a multi-
layered topology. Specifically, Hunt and Wanderley [4]
suggested the need for 3 layers of mapping, in which the
first and last layers are device-specific mappings between
technical control parameters and gestures (in the case of
the first) or aesthetically meaningful “sound parameters”,
such as brightness or position (in the case of the third).
This leaves the middle layer for mapping between param-
eter names that carry proper gesture and sound semantics.
We shall refer to this layer as the “semantic layer”, as de-
scribed in Figure 1.

The tools presented here adhere to this idea. However,
since the first and last mapping layers are device-specific,
the mapping between technical and semantic parameters
(layers 1 and 3) are considered to be part of the controller
and synthesizer interfaces. Using an appropriate OSC ad-
dressing namespace, controllers present all available pa-
rameters (gestural and technical) to the mapping tool. The
tool is used to create and modify the semantic layer, with
the option of using technical parameters if needed.

As a simple example, the T-Stick interface [8] presents
the controller’s accelerometer data for mapping, but also
offers an event-based “jabbing” gesture which is extracted
from the accelerometers. The former is an example of
layer 1 data which can be mapped directly to a synthe-
sizer parameter. The latter is gestural parameter presented
by layer 2, which can be mapped, for example, to a sound
envelope trigger. The mapping between layer 1 and layer
2 for the “jabbing” gesture, (what we call gesture extrac-
tion), occurs in the T-Stick’s interface patch.

We have also applied this system to gesture control of
sound spatialization parameters [9], in which case a tech-
nical mapping layer exposes abstract spatialization param-
eters (such as sound source trajectories) to the semantic
layer, rather than synthesis parameters.

3.2. Connection Processing

Gestural data and sound parameters will necessarily carry
different units of measurement. On the gestural side, we
have tried, whenever possible, to use units related to phys-
ical measurements: distance in meters, angles in degrees.
In sound synthesis, units tend to be more arbitrary, but
some standard ones such as Hertz and MIDI note number
are obvious. In any case, data ranges will differ signif-
icantly between controller outputs and synthesis inputs.
The mapping tool attempts to handle this by providing
several features related to data processing.

One interesting data processing tool that we are explor-
ing is a filter system for performing integration and differ-
entiation. We have often found during sessions that a par-
ticular gesture might be more interesting if we could map
its energy or its rate of change instead of the value directly
[3]. Currently the data processing is limited to first-order
FIR and IIR filtering operations, and anything more com-
plex must be added as needed to the “gesture” mapping
layer and included in the mappable namespace.

3.3. Divergent and Convergent Mapping

It has been found in previous research that for expert inter-
action, complex mappings are more satisfying than simple
mappings. In other words, connecting a single sensor or
gestural parameter to a single sound parameter will result
in a less interesting feel for the performer [11, 6].

Of course, since our goal is to use abstracted gesture-
level parameters in mapping as much as possible, simple
mappings in the semantic layer are in fact already com-
plex and multi-dimensional [5]. Still, we found it would
be useful to be able to create one-to-many mappings, and
so the mapping tool we present here supports this. Each
connection may have different scaling or clipping applied.

We also considered the use of allowing the tool to cre-
ate many-to-one mappings. The implication is that there
must be some combining function which is able to arbi-
trate between the various inputs. Should they be summed,
or perhaps multiplied, or should some sort of comparison
be made between each of the inputs?

A combining function implies some relationship be-
tween gestural parameters; in some cases, the combina-
tion of gestural data may itself imply the extraction of a
distinct gesture, and should be calculated on the first map-
ping layer and presented to the mapping tool as a single
parameter. In other cases the combination may imply a
complex relationship between synthesis parameters that
could be better coded as part of the abstracted synthesis
layer. In yet other cases the picture is ambiguous, but the
prospect of needing to create on-the-fly many-to-one map-
pings during a working session seemed to be unlikely. We
did not implement any methods for selecting combining
functions, and for the moment we have left many-to-one
mappings for future work.

4. THE ORCHESTRAL NETWORK
NEIGHBOURHOOD

In our system, there are several entities on the network
that must communicate with each other in a common lan-
guage. These include controllers and synthesizers, as well
as the software devices used for address translation and
data processing, called routers, and finally the GUI used
to create and destroy connections. This protocol must al-
low them to perform some basic administration tasks, in-
cluding: announcing presence on the network; deciding
what name and port to use; and finally describing what
messages it can send and receive.

The system can be thought of as a higher-level proto-
col running on top of an OSC layer. While it has been
decided that all entities on the network will speak OSC to
each other, OSC itself dictates nothing about what lower-
level transport protocols and ports to use, nor what kinds
of messages should be exchanged. We needed to devise a
common set of OSC messages to allow the use of a stan-
dard interface to control all devices in question.

4.1. Topology and Protocol

Because OSC addressing is designed to uniquely identify
any particular value, it is possible to broadcast messages
on a common bus and have them be received by the in-
tended recipient. This makes it mostly trivial to switch
between various network topologies. While a common
bus is necessary for locating devices, it is not necessary
nor is it optimal to have gestural data streams sharing the
same bus.

We have decided to use a multicast UDP/IP port for
administrative tasks such as device announcement and re-
source allocation. This common port is needed to resolve
conflicting device identifiers and to allow new devices to
negotiate for a unique private port on which to receiving
messages. We shall refer to it as the “admin bus”.

For routing mapped data streams, several topologies
can be used. Though it simplifies programming, sharing
a bus for high-traffic gestural streams wastes communica-
tion as well as processing resources. Messages must be
received and addresses must be parsed before being re-
jected. If several devices are present on the network, a
high percentage of traffic may be rejected, making a com-
mon bus inefficient. In our system, each device reserves
a UDP/IP port for receiving data streams. Thus the OSC
traffic is quickly routed and filtered on the transport layer
and address parsing is only necessary for properly targeted
messages.

Another factor affecting the network topology is the
role of the router in mapping. Currently, controllers send
their data streams to a router which performs address map-
ping and scaling before re-transmitting to a synthesizer.
This implies a centralized topology as seen in Figure 2.
However, with the protocols described in this section, it is
perfectly feasible to have multiple router instances on the
network. This can help reduce traffic loads and distribute

MAPPING INTERFACE

!

ROUTER

CONTROLLER

CONTROLLER

CONTROLLER

Figure 2. A centralized topology in which all traffic is
routed through a central router service.

MAPPING INTERFACE
7 N

4 / \ ~

CONTROLLER

CONTROLLER

CONTROLLER
ROUTER

Figure 3. Equivalently, a router can be embedded in each
controller to create a true peer-to-peer network.

processing. Taking it to the extreme, we propose append-
ing a router to each controller, in order to create a truly
peer-to-peer topology, as described by Figure 3.

4.2. Name and port allocation

When an entity first appears on the network, it must
choose a port to be used for listening to incoming data
streams. It must also give itself a unique name by which
it can be referred to. A simple solution would be to assign
each device a static name and port. However, we are not
interested in maintaining a public database of “claimed”
ports, and, (being a digital orchestra), we expect multiple
instances of a particular device to be availble for use.

In an attempt to be more dynamic and decentralized,
we have developed a collision algorithm for port and name
allocation: when a new entity announces itself, it posts to
the admin bus a message stating which port it tentatively
intends to use. If this port is reserved or is also being
asked for by another device, a random number is added
and the device tries again. If multiple devices are attempt-
ing to reserve the same numbers, several iterations may
occur, but eventually each device ends with a unique port
number to use. (Strictly speaking, this is only necessary
for devices hosted on the same computer.) The same al-
gorithm is used for determining a device name composed

Mapper

Who is out there?

(o]
Multicast

Figure 4. The mapper GUI requests that devices on the
network identify themselves.

‘ Controller ’

of the device class and a unique number.

4.3. Discovery

Device discovery is an important step toward a truly “plug
and play” environment. When a device appears on the
network, and after it successfully receives a unique name
and port number, it announces its presence with a simple
message stating its function, name, and IP address and
port:

Router /device/router /router/l 192.168.0.3
8003

Controller /device/output /tstick/1

192.168.0.3 8001

Synth /device/input /granul8/1 192.168.0.4
8000

When the mapping interface is launched, it needs to
be able to query the network for devices. It does so by
submitting a simple request:

Mapper /device/who

All entities will respond by repeating their announce
message. The mapping interface listens for the announce
messages and lists the available devices in its drop-down
menus.

An alternative method of performing device discovery,
using the ZeroConf protocol, has been proposed at the
2006 OSC developers’ meeting. Since then, a Max/MSP
implementation of the idea, called OSCBonjour, has been
created by Rémy Miiller, which we have explored for the
above tasks. The idea is promising, but does not yet han-
dle more than device discovery. We decided that, for the
moment, a pure OSC solution is adequate for our pur-
poses, but this does not exclude the possiblity of using
OSCBonjour in the future.

4.4. Namespace queries

Lastly, each orchestra member must be able to tell others
what it can do. In other words, it must be able to say what
messages it can receive and what messages it can send.
Wright et al. [13] proposed the use of the /namespace
message for causing a device to enumerate its available
namespace. We have implemented this for each transmit-
ter and receiver on the network. In addition to listing the
namespace itself, each available parameter optionally can
include information about data type, data range and units
used. These come into play when the mapper must set
up automatic scaling between data streams, as described
below.

In order to make this metadata optional, we have used
a tagged argument scheme, similar to the Jamoma syntax.
In the example below, the mapper interface communicates
with a controlled named “/tstick/1”” and a granular synthe-
sizer named ““/granul8/1”.

Mapper /tstick/1l/namespace

Controller /tstick/1l/namespace/output
/tstick/1l/raw/piezo Qtype 1 @min O
@max 255 Qunits na

Controller /tstick/1l/namespace/output
/tstick/1/...

Mapper /granul8/1l/namespace

Synth /granul8/1/namespace/input

/granul8/1l/reverb/mix @type f Qunits

normalized @min 0 @max 1

Synth /granul8/1/namespace/input
/granul8/1/...

5. THE DIGITAL ORCHESTRA TOOLBOX

In the process of creating controller, synthesizer, and map-
ping patches, we have made an effort to modularize any
commonly used subroutines. These have been organized,
with help patches, into a toolbox that we find ourselves
re-using quite often. This toolbox is will be available on
the Digital Orchestra website [1].

The following is a short description of some of the
available abstractions:

dot.admin Uses other toolbox abstractions to handle
communication on the Orchestral Network Neigh-
bourhood multicast bus.

dot.alloc The abstracted algorithm used by dot.admin
for allocating a unique port and device name.

T-Stick

/tstick/namespace

Mapper Granul8

/granul8/namespace

/tstick/namespace/output

ik y
/tstick/raw/piezo /granul8/namespace/input

gzﬁ-\e(; /granul8/reverb/mix
@max 255 @type f
@units na @min 0

@max 1

@units norm

/tstick/...

/granul8/...

Figure 5. A namespace request causes devices to re-
turn their parameter space with information on ranges and
units.

dot.autoexpr Given a destination maximum and mini-
mum, dot.autoexpr will automatically adjust the
linear scaling coefficients for a stream of incoming
data. Calibration can be turned on and off. It can
also handle arbitrary mathematical expressions and
dynamically instantiate objects necessary for per-
forming specified transformations, including first-
order FIR and IIR filters.

dot.dampedenvelope An envelope signal generator
which emulates the behaviour of a resonating ob-
ject which can be damped.

dot.extrema Automatically outputs local maxima and
minima as peaks and troughs are detected in the in-
coming data.

dot.index Keeps track of used indexes and can output
the lowest unused slot.

dot.leakyintegrator A configurable integrator which
leaks over time. The integration can either be linear,
exponential, or an arbitrary transfer function can be
specified as a table.

dot.play/dot.record These objects can be used to
record up to 254 incoming data channels into a
coll object, and later played back at the same rate.

dot.prependaddr Prepends the given symbol onto the
first symbol of a list, without affecting the remain-
ing list members. This is intended for constructing
OSC addresses.

dot.region Outputs widths and centres of multiple se-
lected areas in a list of binary numbers.

dot.timedsmooth A down-sampled audio-rate averag-
ing filter.

dot.transfer Performs table-based waveshaping on con-
trol data streams with customizable transfer func-
tion.

accel1eT/x > /modal/Titerbank/ 1/ gain

NAVESPACE <]

/modal/timbre

5 ol tinbremierpoiate

[7tstick/raw/accevrignt/x
[Ftsticksrawraccevrtsy
[/tsticksrawaccovrignisy

Figure 6. The mapping graphical user interface can be
used to explore the available namespace, make connec-
tions, and specify scaling and other data processing.

Mapper || Router |

/router/connections

.
>

/router/connected <input> <output> <mapping properties>

/router/connected <input> <output> <mapping properties>

/router/connected <input> <output> <mapping properties>

/router/connected <input> <output> <mapping properties>

A A A A

Figure 7. A router device can report its current set of
connections. The mapper GUI requests it when the router
is first selected.

6. THE MAPPING INTERFACE

A mapping interface has been developed to act as a GUI
for mapping tasks. It forms a separate program from the
Router, and communicates with controllers, synths, and
routers using OSC. In addition to allowing the negotia-
tion of mapping connections from another location on the
network, this approach allows for the simultaneous use of
multiple mapping interfaces, with multiple users collab-
orating to map the parameters of a common set of con-
trollers and synths. The Mapping interface has several
main functions:

When a mapper is launched, it asks discovered routers
for their connection status. Connections are displayed on
the screen for selected devices.

6.1. Browsing the Network Neighbourhood

The first use of the mapping interface is naturally choos-
ing the devices which you wish to work with, both for ges-

ture and for sound synthesis. The interface queries devices
on the network, to discover mappable inputs and outputs,
and displays this information in an easily understandable
format. Drop-down menus are used to select a device or
devices.

6.2. Browsing and searching namespaces

In this capacity the mapping interface communicates di-
rectly with the various devices present on the network, re-
questing them to report their namespaces when necessary
and displaying this information to the user. In addition to
the namespace itself, some other information about each
parameter is requested, including whether it is an input
or an output, the data type (i, f, s, etc.), the unit type as-
sociated with the parameter (Hz, cm, etc.), and the min-
imum and maximum possible values. OSC address pat-
terns for controller outputs are displayed on the left side
of the mapping interface, and synthesizer inputs are dis-
played on the right.

In order to manage the browsing and mapping of very
large namespaces, the mapping interface also allows for
powerful filtering and searching using pattern-matching.
Two stages of namespace filtering are available, which
may be used together. One stage allows filtering by OSC
address-pattern prefix, chosen from a drop down menu,
so that the user may view the set of parameters which
are children of a particular node in the address hierarchy.
The other stage allows filtering by regular expression, so
that only parameters matching a particular pattern are dis-
played.

On occasions where the namespace can change, such
as for entities that have a configurable interface, addition
or removal of addresses is announced on the multicast bus
so that routers can destroy any connections appropriately,
and mappers can add or remove entries.

6.3. Negotiating mapping connections and properties

In this capacity the mapping interface communicates only
with a specific router, acting as a GUI for controlling the
router’s function, and supplying important visual feed-
back regarding the router’s internal state to the user. Sim-
ple and intuitive methods are provided for creating and de-
stroying mapping connections, and for editing the proper-
ties of existing connections (i.e.: scaling, clipping). Con-
nections are created by selecting displayed namespaces
on each side of the interface (inputs and outputs), and
lines are drawn connecting mapped parameters. Mapping
connections can be selected (in which case they are dis-
played in red) for editing or deletion. By selecting mul-
tiple namespaces or connections, many mappings can be
created, edited, or destroyed together.

When a connection is made, the mapping tool defaults
to performing no operation on the data (“bypass”). A but-
ton labeled “linear” instructs the tool to perform basic lin-
ear scaling between the provided data ranges. A button
labeled “auto” turns on and off calibration of the scaling
using the detected minima and maxima of the input data

stream. The user can also manually type “linear” in an ex-
pression textbox with arguments defining a specific input
and output range. Options are also available for defining
a clipping range.

The expression box is quite versatile. For more ad-
vanced users, it accepts any string which can be under-
stood by Max/MSP’s “expr” object. Expressions can refer
to the current value, or a single previous input or output
sample. It may be used to specify non-linear and logarith-
mic mappings, for example. There is currently no support
for table-based transfer functions.

6.4. Message Examples

6.4.1. The user selects controller namespace
“/tstick/instrument/damping”, synth namespace
“/granul8/1/grain/l/filter/frequency”:

Mapper /router/1l/connect <controller
parameter> <synth parameter>

Example /router/1/connect
/tstick/1/instrument/damping
/granul8/1/grain/l/filter/frequency

6.4.2. The router receives the message and creates
mapping with default parameters:

Router /router/1/connected <controller
parameter> <synth parameter>
<properties>

Example /router/1/connected
/tstick/1l/instrument/damping
/granul8/1/grain/1/filter/frequency
@scaling bypass @clipping none

6.4.3. The user applies auto scaling to the mapping:

Mapper /router/1/modify <controller
parameter> <synth parameter>
<properties>

Example /router/1/modify
/tstick/1/instrument/damping
/granul8/1/grain/1/filter/frequency
@scaling auto 20 1000

Router /router/1/modified <controller
parameter> <synth parameter>
<properties>

Example /router/1/modified
/tstick/1/instrument/damping
/granul8/1/grain/1l/filter/frequency
@scaling auto 20 1000

Example /router/1/modified
/tstick/1l/instrument/damping
/granul8/1/grain/1/filter/frequency
@scaling (x-32)x0.00345+100

6.4.4. The user ends calibration:

Mapper /router/1l/modify <controller
parameter> <synth parameter>
@calibration 0

Example /router/1/modify
/tstick/1/instrument/damping
/granul8/1/grain/1/filter/frequency
@calibration 0

6.4.5. The user deletes the mapping:

Mapper /router/1l/disconnect <controller
parameter> <synth parameter>

Example /router/1/disconnect
/tstick/1/instrument/damping
/granul8/1l/grain/l1/filter/frequency

Router /router/1/disconnected <controller
parameter> <synth parameter>

Example /router/1/disconnected
/tstick/1/instrument/damping
/granul8/1/grain/1/filter/frequency

6.5. Saving and Loading Mapping-sets

Mappings can be saved to disk and loaded for later use.
This task is taken care of by the router, which is currently
implemented as a Max/MSP coll text file. We consider
that this information may be more useful as XML data,
since it is language agnostic and could be more easily
imported into other implementations. We will define an
XML format for mapping data in the near future.

7. DISCUSSION

From their earliest use, the solutions we have developed
have allowed us to streamline the process of mapping in
collaboration with performers and composers. The ability
to quickly experiment with a variety of mapping connec-
tions democratizes the mapping process, since it is easier
to try everyone’s ideas during a mapping session. Show-
ing the performers that the connections are malleable al-
lows them to contribute to the development of a comfort-
able gestural vocabulary for the instrument, rather than ac-
cepting the mappings provided. Composers are able to ex-
plore control of sounds that interest them without supervi-
sion or assistance of a technical member. Using common
tools for the group means that the work of others is easily
viewed and understood.

Controllers and synths that are still in development are
also easily supported: as the supported parameter-space
increases, the device simply presents more namespaces to
the GUI.

Naturally this system does not solve all of the prob-
lems encountered in a collaborative effort of this type.
The technical knowledge of the group members varies

widely, and some technical knowledge of the individual
controllers and synths is still necessary, not least because
they are still in development and may not always respond
predictably. As much as possible, however, we have made
the connection, processing, and communication of data
between devices easy to both comprehend and perform.

One area of frustration in our work has been dealing
with devices (specifically software synths) which commu-
nicate solely using MIDI. Since the norm in this case is to
use MIDI control-change messages, many software envi-
ronments allow flexible mapping between MIDI input val-
ues and their internal semantically labeled synth parame-
ters. This means that although the synth parameters are
easily understood from within a sequencing environment
for adjustment or automation, external access to these pa-
rameters is provided only through an arbitrary set of MIDI
control change identifiers. One solution is to create a static
set of MIDI mappings for our use, and provide a trans-
lation layer outside the environment to expose semantic
parameters identical to those used internally. In practise,
however, convincing users to abandon the MIDI mapping
layer has proven more difficult than we anticipated.

In namespace design we have tried throughout to con-
form to the hierarchy proposed for GDIF [7], since we
are also involved in its development, and this also raises
some implementation questions. An important part of
the GDIF hierarchy concerns representing gesture infor-
mation in terms of the body of the performer, using the
/body OSC prefix, and indeed several of our controllers
already use this namespace. However, distinguishing per-
formers using OSC address patterns proves much more
complex when considering the various possible permuta-
tions of multiple performers and controllers.

8. FUTURE WORK

In addition to incremental improvements in function and
usability, we have planned the addition of several new fea-
tures:

Many-to-one mapping: As discussed above, we
would like to implement the ability to negotiate many-to-
one mapping relationships explicitly within the mapping
interface, with simple GUI control over the desired com-
bining function.

Vectors: Many OSC devices currently send or receive
data in vectors or lists. The ability to split, combine, indi-
vidually scale, and reorder vector elements will be added.

OSC pattern-matching: Pattern-matching annd wild-
card functionality is defined in the OSC specification [12]
but generally has not been fully implemented in OSC sys-
tems. It is easy to imagine scenarios in which using wild-
cards in mapped OSC address patterns would be a power-
ful addition to our system.

Editing namespaces: In the context of GDIF, the abil-
ity to alter parts of mapped namespaces without destroy-
ing the existing connections is also desirable.

Data rates: Rather than sending controller informa-
tion as quickly as possible, we would like to make the data

rate a property of the mapping connection. A data stream
might be used to control very slowly-evolving synthesis
parameters, in which case very high data rates may be un-
necessary and wasteful.

9. ACKNOWLEDGEMENTS

The authors would like to thank Alexander Refsum Jense-
nius for important discussion related to this effort, as
well as the members of the Digital Orchestra Project
group, especially Heather Hindman, Xenia Pestova, Chloé
Dominguez, Fernando Rocha, D. Andrew Stewart, and
Sean Ferguson. This project was supported by funds
from the Fonds de recherche sur la société et la cul-
ture (FQRSC) of the Quebec government and the Natu-
ral Sciences and Engineering Research Council of Canada
(NSERC).

References

[1] The mcgill digital orchestra, 2007. Available:

http://www.music.mcgill.ca/musictech/
DigitalOrchestra/.

[2] Integralive, 2007. http://integralive.org.

[3] A.Hunt. Radical User Interfaces for Real-time Mu-
sical Control. PhD thesis, University of York, UK,
1999.

[4] A. Hunt and M. M. Wanderley. Mapping perfor-
mance parameters to synthesis engines. Organised
Sound, 7(2):97-108, 2002.

[5] A. Hunt, M. Wanderley, and R. Kirk. Towards
a model for instrumental mapping in expert musi-
cal interaction. In Proceedings of the International
Computer Music Conference, San Fransisco, 2000.
International Computer Music Association.

[6] A.Hunt, M. Wanderley, and M. Paradis. The impor-
tance of parameter mapping in electronic instrument
design. In Proceedings of the 2002 Conference on
New Interfaces for Musical Expression, pages 149—
154, 2002.

[7] T. Kvifte and A. R. Jensenius. Towards a coher-
ent terminology and model of instrument description
and design. In Proceedings of the conference on New
interfaces for musical expression, pages 220-225,
Paris, France, 2006. IRCAM - Centre Pompidou.

[8] J. Malloch and M. M. Wanderley. The T-Stick: From
musical interface to musical instrument. In 7o ap-
pear in the Proceedings of the 2007 International

Conference on New Interfaces for Musical Expres-
sion (NIMEO7), New York City, USA, 2007.

[9] M. Marshall, J. Malloch, and M. M. Wanderley. A
framework for gesture control of spatialization. In

[10]

[11]

[12]

[13]

Paper to be presented at the 2007 International Ges-
ture Workshop, Lisbon, Portugal, 2007.

T. Place and T. Lossius. Jamoma: A modular stan-
dard for structuring patches in max. In Proceed-
ings of the International Computer Music Confer-
ence, New Orleans, USA, 2006.

J. B. Rovan, M. Wanderley, S. Dubnov, and P. De-
palle. Instrumental gestural mapping strategies as
expressivity determinants in computer music perfor-
mance. In Proceedings of Kansei- The Technology
of Emotion Workshop, Genova, 1997.

M. Wright. Opensound control specification, 2002.
Available: http://www.cnmat.berkeley.edu/
0SC/0SC—-spec.html.

M. Wright, A. Freed, and A. Momeni. OpenSound
Control: State of the art 2003. In Proceedings of the

Conference on New Interfaces for Musical Expres-
sion, 2003.

