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Abstract 

A number of conducting gesture analysis and performance systems have been 

developed over the years. However, most of the previous projects either pri­

marily concentrated on tracking tempo and amplitude indicating gestures, 

or implemented individual mapping techniques for expressive gestures that 

varied from research to research. There is a clear need for a uniform pro­

cess that could be applied toward analysis of both indicative and expressive 

gestures. The proposed system provides a set of tools that contain exten­

sive functionality for identification, classification and performance with con­

ducting gestures. Gesture recognition procedure is designed on the basis of 

Hidden Markov Model (HMM) process. A set of HMM tools are developed 

for Max/MSP software. Training and recognition procedures are applied to­

ward both right hand beat- and amplitude- indicative gestures, and left hand 

expressive gestures. Continuous recognition of right-hand gestures is incor­

porated into a real-time gesture analysis and performance system in Eyesweb 

and Max/MSP / Jitter environments. 

Un nombre de systèmes d'analyse et d'exécution avec des gestes d'un chef 
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d'orchestre ont été développés au cours des annes. Pourtant, la plupart de 

projets précédents se sont principalement concentrés sur des gestes indiquant 

le tempo et l'amplitude, ou ont mis en application des techniques individu­

elles pour les gestes expressifs qui ont changé de la recherche à la recherche. Il 

y a un besoin clair d'une procedure uniforme qui pourrait être appliqué vers 

l'analyse des gestes indicatifs et expressifs. Le système proposé fournit un en­

semble d'outils qui contiennent la fonctionnalité étendue pour l'identification, 

la classification et l'exécution avec des gestes d'un chef d'orchestre. La proce­

dure d'identification de gestes est con cu sur la base du processus du Modèle 

Caché de Markov (HMM). Un ensemble d'outils de HMM sont développés 

pour le logiciel de Max/MSP. Des procédures de formation et d'identification 

sont appliqués vers les gestes indicatifs de main droit aussi que vers les gestes 

expressifs de main gauche. L'identification continuelle des gestes droits est 

incorporée à l'analyse de gestes et à un système d'exécution en temps réel 

dans des environnements d'Eyesweb et de Max/MSP / Jitter. 
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Chapter 1 

Introduction 

The role of gestures in human-computer interaction is a fascinating area 

of research, which demonstrates that much of the communicative intent 

cornes through ancillary movements that either coexist with language (Mc­

Neill 1992), or even replace it completely, as in the case of sign language 

(Wachsmuth and Frohlich 1998). In music, the best known and most re­

searched gestural communication mode is conducting. 

Conducting can be viewed as a way of controlling high-Ievel aspects of 

performance of multiple instruments with one's physical gestures but with­

out direct contact with the instruments themselves. In a conductor-musician 

interactive environment, visual information perceived by musicians serves as 

the means of conveying the musical gestures that are created by the conduc­

tors physical gestures. 

In its nature, conducting is a highly individualistic form of art that of­

fers a broad range of expressiveness, similarly to and arguably even more 

extensive than the expressive possibilities of playing a musical instrument. 

A talented conductor uses his or her entire body to convey the directions 

1 
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for the orchestra. Whereas it is impossible to identify and classify an of the 

individualistic elements responsible for the effect of an expressive conducting 

performance, the traditional school of orchestral conducting has developed 

a well-defined and structured grammar of basic conducting gestures that is 

shared by majority of professional conductors and taught to student con­

ductors. A good description of basic conducting technique can be found in 

(Rudolph 1994). 

1.1 Expressive Conducting Gestures 

The two principal functions of an orchestral conductor are to indicate the 

timing information for the beats of the score in or der to synchronize the per­

formance of the musical instruments, and to provide the gestures to indicate 

his or her artistic interpretation of the performance. The second function 

introduces a degree of variation and personal interpretation in the musical 

performance, and is represented by a number of gestures with a high de­

gree of expressivity. Those expressive gestures provide an interesting area 

for research and are the main topic of this thesis. 

1.2 Classification of Conducting Gestures 

The technique of traditional conducting provides an excellent classification 

of conducting gestures. The proposed classification was derived from several 

well-known sources dealing with basic conducting methodology (Long 1971) 

(Malko 1950) (Ross 1976) (Rudolph 1994). 
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1.2.1 Classification by type 
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The most natural way of classification of conducting gestures is to group 

them by their intended effect on the performance. The basic grammar of 

conducting can be represented through the following hierarchy of elements: 

Gesture 

- Time-Beating 

- Regular beat 

- N eutral Legato 

- Expressive Legato 

- Light Staccato 

- Full Staccato 

- Marcato 

- Tenuto 

- Subdivided beat 

- Beat Transitions 

- Expressive / Artistic 

- Dynamics 

- Crescendo 

- Diminuendo 

- Sforzando 

- Phrasing 

- Sustained notes 



CHAPTER 1. INTRODUCTION 4 

- M elodic line 

- Sound Extraction 

- Staccato 

- Tenuto 

- Cues (Entrances) 

- ReleasesjCutoffs and Rests 

- Syncopationj Accent 

- Rolds (Fermata) 

- Combinat ions of gestures (consecutive) 

- Combinat ions of gestures (simultaneous) 

- Individualjfree technique expressive gestures 

1.2.2 Classification by localization 

The hierarchy of gestures shows that the greatest division of conducting 

gestures exists between time-beating gestures, almost always performed ex­

clusively with the right hand, and expressive artistic gestures, many of which 

are performed with the left hand. Rowever, the division of gesture execution 

between right and left hands is not that straightforward. 

Whereas it is a corn mon mistake of inexperienced conductors to use both 

hands for time-beating gestures, professional conductors perform tempo indi­

cations exclusively with the right hand-with rare exceptions, such as when a 

very large ensemble is conducted, time-beating gestures might be performed 

with both arms in parallel, or in an extremely unlikely case when the right 

hand is responsible for a very complex expressive indication, the left hand 
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might take over the time-beating for a short period of time. For practical 

purposes, it can be assumed that tempo gestures are always performed either 

by the right hand, or both hands where the le ft hand doubles the movements 

of the right hand, and therefore right hand following alone is sufficient to 

extract the time-beating information at aU times. 

Whereas time-indicating gestures are essentiaUy of continuous and peri­

odic nature, one gesture following another and transition points indicating 

the beat arrivaIs, expressive gestures can be characterized as possibly periodic 

or non-perioodic, with their occurence depending on conductor's interpreta­

tion and position in the musical score. Left hand is largely responsible for 

expressive gestures-however, right hand contributes to their performance as 

weIl. 

Very often, combinat ions of gestures occur in both hands. In one possible 

case, two or more expressive gestures performed by the same hand are com­

bined into a sequence of movements, which in itself can be viewed as a complex 

expressive gesture-such as a diminuendo-cutoff or sforzando gestures in the 

le ft hand. Another possible combination of gestures takes place when an ex­

pressive gesture is incorporated into another (often a time-beating) gesture, 

as in the case of indications of variations in dynamics and expressive styles 

that occur simultaneously with tempo indications in the right hand. 

Artistic expressive gestures can be conveyed through the movement of 

the right hand, left hand, or auxiliary indications, such as head movement, 

facial expression, eye direction, breathing and posture. Whereas in many 

previous works an effort has been made to track those auxiliary elements and 

gestures performed with a baton, the current work is focused on recognition 
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of expressive gestures with right and left hands without a baton. According 

to (Rudolph 1994), using or not using a baton for orchestral conducting are 

both acceptable practices, and sorne orchestral conductors (such as Pierre 

Boulez, for example) do not use a baton during their performance. Whereas 

the use of baton contributes to more clarity and precision in beat-indicating 

gestures, not using the baton allows for a more active participation of the 

right hand in expressive gesture indications. Since this thesis focuses on 

recognition of expressive gestures, and due to technical limitations of input 

devices used in the project, it was chosen not to track the baton. 

1.3 Computer-based conducting recognition 
systems 

Over the years, researchers proposed a number of computer-based systems 

to understand the characteristics of conducting gestures. However, design of 

identification and recognition procedures for a range of expressive gestures 

has been one of the main issues in the field of computer-based conducting 

gesture recognition. There is a significant gap between the amount of ex­

pressive gestures produced by a conductor to control an orchestra, and the 

amount of gestural data identifiable and recognizable by computer systems. 

Most of the early designed systems concentrated on extraction of the right 

hand or baton-in-right-hand gestures-temporal beat transition points to 

control the playback of a prerecorded score and the amplitude of movement 

to control the playback volume-while not taking into account a wide range 

of expressive gestures produced by the left and right hands which contains 

meaningful information for the orchestra. Those of the later systems that did 
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implement identification and recognition procedures based on an extensive 

set of expressive articulation parameters used individual mapping techniques 

which varied from research to research. A uniform procedure is needed that 

would be able to identify and recognize not only beat-tracking and amplitude 

gest ures , but also both right and le ft hand expressive gestures using a high 

level recognition technique. 

Similarly to an orchestral mus ici an who is expected to know the meaning 

of conducting gestures in the context of both general technique and idiosyn­

cratic style of the conductor in order to recognize and apply them to a musical 

score, any computer gesture recognition system is required to contain some 

knowledge of the gestures it is expected to identify. More specifically, such 

a system should include three basic elements-a vocabulary of gestures to 

be recognized, a procedure to identify transitions between gestures from an 

incoming stream of data retrieved from the conductors movements, and a set 

of rules that can be used by the system to recognize the gestures. 

The main interest of using computer recognition for conducting gestures 

involves gaining a better understanding of dynamics of conducting gestures 

in terms of general conducting technique, different schools of conducting and 

individu al conducting styles. Applications of conducting gesture recognition 

include development of educational programs for student and professional 

conductors, conducting performance systems, and research tools in the area 

of analysis and classifications of conducting gestures. 
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This thesis is based on the development of a Conducting Gesture Analy­

sis, Performance and Recognition System. Gesture Analysis refers to the 

component of the system that deals with processing of the input informa­

tion in order to track the movement of the right and left hands, extract 

their respective position al data streams, and identify elementary right-hand 

gesture elements-such as beat transition points and amplitude of the beat­

indicating movements. Gesture Performance refers to the part of the system 

that maps the elementary features to changes in output of the prerecorded 

audio (and optionally, video) score during a realtime interactive performance 

with the system. Gesture Recognition, which is the main area of research 

presented in the thesis, is the component of the system that uses high-level 

training and recognition procedures to pro cess the positional information ex­

tracted with Gesture Analysis, and provides a set of positional research tools 

that are used for recognition of characteristic features of left- and right-hand 

expressive conducting gestures. 

Chapter 2 of the thesis will provide a chronological overview of up-to-date 

research done in the area of conducting recognition and classify the developed 

systems in terms of their design and performance characteristics. Chapter 3 

will focus on the implementation of the Gesture Analysis and Performance 

components of the system. Chapter 4 will discuss the application of Hidden 

Markov Model (HMM) in Max/MSP environment as a Gesture Recogni­

tion element of the system. Chapter 5 will describe the research based on 

recognition of expressive conducting gestures that was carried out with the 

system. Chapter 6 will discuss results of the experiments and will summa-
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rize the advancements presented in the thesis. Appendix A will present a 

general overview of the Hidden Markov Model techniques that were used in 

the project. 



Chapter 2 

Overview of Previous Systems 

Many performance, educational and research systems have been designed 

over the years in the areas of computer-based conducting gesture recognition. 

Those systems experimented with a number of different approaches towards 

conducting gesture analysis, recognition and mapping to music synthesis. 

2.1 Early Systems 

G roove system 

The first system that implemented a user-controlled realtime music synthe­

sis was the GROOVE (General Real-time Output Operations on Voltage­

controlled Equipment) system, designed by Mathews and Moore in 1970 

(Mathews and Moore 1970). The system used a 24-note keyboard, four ro­

tary knobs, and 3-D joystick as input devices to control a synthesizer that 

generated sounds through an interface for analog devices and 14 DAC con­

vertors. The GROOVE was the first project to introduce the idea of the 

expressive control of a user over the performance of a computer music syn­

thesis program, in a way similar to a conductor having a degree of expressive 

10 
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control over performance of the orchestra. 

Conductor Program 

In 1976, Mathews implemented a Conductor Program (Mathews 1976). The 

application was based on the GROOVE system, and was designed to improve 

user control over computer performance, which introduced a higher degree 

of expressivity and improvisation in music synthesis. Articulation and other 

expressive effects were stored in a score file, and could be applied to music 

during realtime performance. 

Microcomputer-based Conducting System 

In 1980, Buxton et al. designed a computer-based conductor following per­

formance system (Buxton, Reeves, Fedorkov, Smith, and Baecker 1980). The 

system tracked the 2-dimensional position of a cursor (a mouse-type input 

device) on a tablet and input from buttons on the cursor, as well as exter­

nal switches and sliders. Tracked parameters included pitch shi ft , tempo, 

amplitude, timbre and articulation parameters. Preprocessed score, which 

consisted of sets of instructions for the synthesizer, was used to produce 

the output of the system. Similarly to the Groove and Conductor Program 

projects, this system was not based on recognition of actual conducting ges­

tures, but rather worked with simulation of those gestures in 2-dimensional 

space using a number of input devices (tablet, cursor, switches and slides). 
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2.2 MIDI-based systems 

Conductor Follower 

12 

Following Buxtons research, a Conductor Follower system was designed by 

Hafiich and Burns in 1983 (Hafiich and Burns 1983). The system used Po­

laroid ultrasonic rangefinder units and a wand-shaped device with a corner 

refiector on its tip to produce refiections that were analyzed by a computer. 

Position of the wand device was tracked in 2D space and used to extract 

beat points. The analyzed information was applied to control tempo and dy­

namics of the synthesized sound. The significance of the Conductor Follower 

project was that it was the first system to extract and analyze a range of 

real conducting gestures (and not their simulations) in space-unlike previ­

ous systems that used such input devices as a joystick and knobs (Mathews 

and Moore 1970) or a tablet (Buxton, Reeves, Fedorkov, Smith, and Baecker 

1980), this system used a wand-shaped device which was similar to an actual 

orchestral conducting baton. 

Mechanical Baton and Radio Baton 

In 1989, Max Matthews designed a device called Mechanical Baton (Math­

ews 1989). The baton, called a Daton, hit a metal plate which sent positional 

information to a PC Intel computer with a Roland 401 MIDI cardo The com­

puter made necessary corrections to a prerecorded pitchj duration score and 

sent out MIDI information to Yamaha synthesizer. The score variables that 

were affected by incoming information were tempo, loudness and balance of 

voices. In 1991, Daton was improved into a Radio Baton system, which used 

two batons that were moved above a metal plate (Mathews 1991). Positional 
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input data used by the system was determined by radio frequency signaIs 

emitted from the batons. 

MIDI Baton System 

In 1989, a MIDI Baton system was developed by Keane and Gross (Keane 

and Gross 1989). The system used a baton controller mechanism and a 

footswitch as input devices to control a sequencer that would generate the 

sound. The baton contained a met al baIl attached to a spring wire inside a 

brass tube. Change in acceleration of the baton caused the contact between 

the baIl and the tube, which in its turn created an electrical signal. Beat 

information was extracted directly from electrical signaIs with sorne min or 

adjustments. The footswitch was used to send startjpausejrestart commands 

to the sequencer. An important contribution of the project was development 

of system control over lead/lag time between the conductor and the system, 

degree of response to tempo variations, and minimum time between trigger­

ing messages to the sequencer. Later advancements of the project included 

a MIDI Baton II (Keane, Smecca, and Wood 1990) and MIDI Baton III 

(Keane and Wood 1991) systems. 

Computer Music System and Gesticulation System 

Also in 1989, Morita et al. designed a Computer Music System that Follows a 

Human Conductor, the first project to use a CCD camera as an input device 

(Morita, Otheru, and Hashimoto 1989). Feature extraction hardware used 

with the camera followed a white glove or a baton marker of a conductors 

right hand. The system allowed for tempo and intensity control of a pre­

recorded MIDI score. In 1990, the baton-motion understanding system was 
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combined with a gesture recognition system that tracked trajectory, velo city 

and acceleration information of a conductor's left hand with the Dataglove 

input device (Morita, Otheru, and Hashimoto 1990). The collected informa­

tion was mapped to control dynamics and articulation effects in the score. 

Another important component of the system was a self-evaluation system 

that recorded results for next performance, which was a first attempt to use 

a learning algorithm based on collected data in a conductor gesture recogni­

tion device. 

Light Baton 

Another device that used a CCD camera, called Light Baton, was designed in 

1992 by Bertini and Carosi (Bertini and Carosi 1992). The system was pri­

marily intended to be used for synchronization of live musical performances 

with prerecorded MIDI scores on a computer, with conductor's gestures serv­

ing as a connection between the human performer and the computer. A spe­

cial conducting baton with a lamp on its tip was used to send light signaIs 

to the CCD camera. The light position was analyzed by an image acquisi­

tion board, and the playback of the prerecorded score was adjusted through 

control of tempo and amplitude. 

Adaptive Conductor Follower 

A system called Adaptive Conductor Follower was developed in 1992 by Lee 

et al. (Lee, Garnett, and Wessel 1992), and was expanded into a Conductor 

Follower system by Brecht and Garnett in 1995 (Brecht and Garnett 1995). 

The system used Buchla Lightning baton and Mattel Power Glove to collect 

positional information, which was then processed by classification and esti-



CHAPTER 2. OVERVIEW OF PREVIOUS SYSTEMS 15 

mation algorithms in Max environment. Three possible evaluation methods 

were implemented at the beat analysis stage-a simple historical updating 

algorithm based on previous beat information, a more detailed updating al­

gorithm with 6-point position update for each beat, and an algorithm based 

on neural networks which used 6-point position probability evaluation algo­

rithm. Tempo and dynamics of the prerecorded MIDI score were modified 

based on the input information. One of the most important achievements of 

the system was that it produced the first successful attempt to use Artificial 

Neural Networks for recognition purposes. 

Ensemble Member and Conducted Computer / Extraction of Con­
ducting Gestures in 3D space 

In 1996, Tobey and Fujinaga designed a conductor follower system that 

used two Buchla Lightning batons in Max environment (Tobey and Fuji­

naga 1996). The system was based on Tobey's previous research (Tobey 

1995) and was the first system to collect and analyze positional information 

in 3D space. Its capabilities included tempo (rubato) control, dynamics con­

trol, beat pattern recognition, beat style recognition, accentuation control 

and timbraI balances. 

Digital Baton 

Aiso in 1996, a Digital Baton system was implemented by Marrin and Par­

adiso (Marrin and Paradiso 1997). The handle of the Digital Baton input 

device contained pressure and acceleration sensors, and the tip of the baton 

held an infrared LED which was tracked by a camera with a position-sensitive 

photodiode. Processed information included adjustments of tempo, dynam-
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ics and articulation effects for the prerecorded score. An in-depth analysis of 

conducting gestures was integrated in the design of the system. 

Figure 2.1: A picture of the Digital Baton device. 

Multi-Modal Conducting Simulator 

A device called Multi-Modal Conducting Simulator was designed in 1998 by 

Usa and Mochida (Usa and Mochida 1998a), (Usa and Mochida 1998b). The 

system used two 2D acceleration sensors, an eye camera and a still video 

image to collect the 'cue-in' information, and a breathing sensor to control 

dynamics at beginnings of musical phrases. The Conducting Simulator was 

the first system to use Hidden Markov Models, a high-level statistical obser­

vation analysis tool, to de termine right hand conducting gesture patterns, 

as weIl as the first system to implement eye tracking as one of the input 

indications. 
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Conductor's Jacket 

In 1998, Marrin and Picard created the Conductor's Jacket system that took 

on an alternative approach towards the source of gestural input information 

(Marrin and Picard 1998), (Marrin 2000). Whereas an of the previous re­

searchers in the field had been mainly concerned with tracking position al 

coordinates of the conductor's hands, Marrin and Pickard constructed a sys­

tem to analyze muscle tension response as the main indication of intended 

gestural messages. 

Figure 2.2: Keith Lockhart conducting an orchestra with the Conductor's 
Jacket system (photograph by Rich Fletcher). 

The Conductor's Jacket consisted of four muscle tension electromyogram 

(EMG) sensors, respiration monitor, he art rate monitor, temperature sensor 

and Galvanic skin response sensor. The input information was passed on to 

two networked comput ers analyzing system. The processed MIDI informa-
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tion was then transferred to MIDI-controllable sound production equipment. 

The variables that were adjusted by the captured gestural information were 

volume, tempo, balance, accents, dynamics and a number of articulation 

effects. 

Conductor Following with Artificial Neural Networks 

In 1999, Ilmonen and Takala used Artificial Neural Networks scheme to cre­

ate a conducting recognition system (Ilmonen and Takala 1999). A data 

suit with FastTrack motion tracking devices was used to collect positional 

information-which was the lst time that high-precision 3D motion tracking 

device was implemented in a conductor follower system. 

Figure 2.3: Tommi Ilmonen conducting with the Virtual Orchestra system 

The system was designed based on a modular approach, with three basic 
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modules responsible for their corresponding layers: input, analyzing software 

and synthesizing software. Tempo and articulation were the main variables 

affected by the input information. In addition, the system used a computer­

generated 3D graphical image of an orchestra controlled by the user's ges­

tures, which was developed on the basis of the Virtual Orchestra system by 

DIVA (Digital Virtual Acoustics Group) (Takala 1997). 

Virtual Dance and Music 

The Virtual Dance and Music system was designed in 2000 by Segen, Ma­

jumder and Gluckman (Segen, Mujumder, and Gluckman 2000). The system 

contained three main components: a gesture recognition system which ex­

tracted the tempo information by using two synchronized cameras, a dance 

sequencer which adjusted sets of video frames to gestural information, and 

a music sequencer which was represented by a MIDI synthesizer with tempo 

control. The main accent was put on prediction of tempo factor in the MIDI 

score using the polynomials, and output produced by the system consisted 

of synchronized dance and music. The Virtual Dance and Music system 

was performance-oriented and focused primarily on synchronization of dance 

and media through elementary tempo-indicating movement rather than on 

recognition and analysis of a wide range of conducting gestures. 

2.3 Audio-based systems 

Personal Orchestra 

In 2002, Borchers et al. designed a system called Personal Orchestra (Borchers, 

Samminger, and Muhlhauser 2002). Similarly to earlier designs of conduc-
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tor following devices, the main control variables of the device were tempo, 

volume and instrumentation. However, one of the main innovations of the 

system was that it used prerecorded audio (and video) material from a real 

life performance by Vienna Philarmonic Orchestra, as opposed to a computer­

generated MIDI score used in previous systems. Whereas this contributed 

to a more realistic sounding output, it also created a number of problems at 

design stage due to complexity of audio compression-expansion in real time. 

A solution to the problem included pitch-shifting the audio file at a range of 

intervals (plus-minus an octave) prior to the use of the system and playing 

the resulting audio files at their corresponding speeds to conserve the pitch 

continuity. For example, a file that resulted in transposing the original file 

up an octave, or doubled frequency, would be played at half speed to produce 

the same pitch components as the original audio file, A dynamic crossfade 

between the files was then implemented to produce audio output at desired 

speeds. Video time stretching did not produce similar problems since it could 

be easily implemented by sim ply repeating or dropping video frames. 

Buchla Lightning sticks were the input device used by the system that 

transmitted 2-dimensional coordinates to a movement analysis program (writ­

ten in Java) which interpreted the maximum downward coordinat es of the 

right hand as beat indicators and vertical coordinat es of the left hand as am­

plitude indicators. The program then applied changes to control variables, 

and sent audio output to the speakers and video output to a projector. Since 

the system was designed for an exhibition in Vienna Music Museum, it also 

included a general graphical user interface with a video content intended to 

make user-computer interaction pro cess more natural. 
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Personal Orchestra Project was not intended for being used by a conductor­

rather, similarly to the Virtual Dance and Music project, it was performance­

oriented and designed as an interactive exhibit for a general user with litt le 

or no conducting experience. Therefore, it did not contain the complexity of 

gesture recognition functionality introduced by sorne of the earlier systems. 

However, its audio stretching algorithm was used in later systems which made 

a significant contribution to research in conducting gesture recognition. 

Conducting Audio Files via Computer Vision 

In 2003, Murphy et al. presented a conducting gesture recognition system 

which was able to control the tempo of an audio file playback through stan­

dard conducting movements (Murphy, Andersen, and Jensen 2003). The 

system incorporated three major components - gesture tracking, audio beat 

estimation and audio time scaling. 

Gesture tracking was done by using a set of Murphy's Computer Vision 

techniques. A direct view camera (by itself or in combinat ion with a pro­

file view camera) was used to track either the conductor's baton or his/her 

right hand. Baton tracking involved a more complex tracking technique with 

seek/track modes whereas hand tracking was done with a more straightfor­

ward Lucas-Kanade feature tracking algorithm (included in the motion cap­

ture library of the Eyesweb software used by the system (Camurri, Coletta, 

Peri, Ricchetti, Ricci, Trocca, and Volpe 2000)). Recognition of conductor's 

beat indications was performed based on visu al input, and time-stamped 

MIDI messages were sent to indicate the points of beat occurances. 

Audio beat estimation was done through extracting parameters from a 
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Figure 2.4: Declan Murphy with the Computer Vision system 

selected audio file. In particular, HFC (high frequency component) parame­

ter, calculated as sum of the high frequency spectral magnitude above 4KHz 

weighted by the frequencies squared, was extracted. Since HFC data by itself 

was too noisy to be used directly for beat detection, it was passed on to a 

beat probability vector algorithm which was modeled based on an assump­

tion that a note onset is more likely to occur at a time interval roughly equal 

to the last time interval between previous note onsets (or equal to a multiple 

of that interval). 

Two alternative methods were implemented for audio time scaling, based 

on the choice of the beat coupling method to be used. The first method, 

known as the event based approach, worked on the assumption of the low 

system latency and attempted to synchronize the beats at highest interval 

rates. In that case, audio information was either cut or extended in order 

to compensate for the beat interval change. Another method, which was 
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designed for conditions of larger latency, is known as a delayed approach. It 

attempted to synchronize the audio playback with conductor's indications 

not for the current, but rather for the subsequent beat. This results in a 

"lagging" effect at stages when a conductor attempts to change the tempo, 

but also gives more time for tempo adjustments. In that situation, a phase 

vocoder was used instead of cutting or repeating audio segments, as in the 

Personal Orchestra system. This was the first time real-time audio manip­

ulation using vocoder techniques was implemented in a conducting gesture 

recognition system, which resulted in a better sound quality. The time scal­

ing calculation algorithm that was used for the delayed approach was similar 

to the one used in the Personal Orchestra system (Borchers, Samminger, and 

Muhlhauser 2002). 

2.4 Overview Summary Table 

This section presents a summarized description of the system described in 

this chapter in table format. 



Year Name Authors Input Device Tracked 
Parameters 

1980 Microcomputer-based Buxton - -
Conducting System 

1983 Conductor follower Haflich, Two ullTasonic Arm position 
Burns rangefinder units in 2d space 

(used in Polaroid 
cameras), 

wand device 

1989 Mechanical Baton Matthews Daton, joystick, Daton position 

knobs when hitting a 
metal plate (2d 
space), 

User input 
through knobs 

1991 Radio Baton Matthews 2 radio Position of the 
frequency batons two batons 

joystick, knobs above metal 
plate (2d) 

1989 MIDI Baton System Keane, Gross Baton controller Acceleration 
(metal bail of the baton 
attached to a controller 
spring wire footswitch 
inside a brass signal to 
tube), footswitch start/stop score 

1989 Computer Music Morita, CCD Camera, Right hand: 
System that follows a Hashimoto, white glove Arm /baton 
Human Conductor Otheru (right hand) / position in 2d 

baton marker space 

1991 Gesticulation System Morita, CCD Camera, Right hand: 

Watanabe, white glove Arm /baton 
(right hand) / position in 2d 

Tracking Cil Vars Output 

Rate /Range 

- - Prerecorded MIDI 
score 

10-20 Hz, tempo, Prerecorded MIDI 
5-foot range dynamics score 

Limited by tempo, Prerecorded MID 1 
metal plate dynamics, score (triggers) 

voice balance 

Space above tempo, Prerecorded MIDI 
metal plate dynamics, score (triggers) 

voice balance 

0.83 Khz tempo Prerecorded MIDI 
score 

30Hz Tempo, Prerecorded MIDI 
dynamics score 

30 Hz Right hand: Prerecorded MIDI 
tempo, score 

Software/Hardware 

-

-

A/Ddata 
translation card, 

Roland MIDI Card, 

Yamaha 816 synth 

AlDdata 
translation card, 

Roland MIDI Card, 

Yamaha 816 synth 

Garfield Time 
Commander 
(synchronization 
unit), MIDI synth 

Computer vision 
system, MIDI 
control unit 

Computer vision 
system (right hand) 

Purpose / Note 

research 

research 

research / 

1 ~ effective baton 

conducting system 

for computers 

Research / 

more precise than 
Mechanical Baton 

Research / 

Oversensitivity 
problem with the 
controller (solved by 
filling the tube with 
fluid) 

Research / 

First system to use a 
CCDcamera 

Research / 

First system 10 
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Hashimoto, baton marker space 

Otheru, Dataglove (left Left hand: 
hand) with trajectory , Harada 
optical-fiber and velocity and 
magnelic acceleration 
position sensors 

1992 LightBaton Bertini, CCD camera, Baton position 

Carosi Baton containing in 2d space 

a lamp 

1992, Adaptive Conductor Lee, Gamet!, Buchla Baton pos ition 
/ Follower Wessel/ Lightning Baton, in 2d space 
1995 Conductor Follower Brecht, Mattel Power 

Gamett Glove 

1995/ Ensemble Member and Tobey / Two Buchla Baton and left 
Conducted Computer / Lightning Batons hand position 

1996 Extraction of Tobey, in 3d space 

Conducting Gestures Fujinaga 
in 3D space 

1996 Digital Baton Marrin Digital Baton Pressure, 
acceleration, 
intensity, 
position 
sensors; 
LED Iight that 
is captured by 
external 
photodiode (2d 
space) 

1998 Multi-Modal Usa, Eye camera Right hand 
Conducting Simulator Mochida (used together acceleration/po 

with a still image silion, breath 

dynamics 

Left hand: 
MPX [Music 
Performance 
Expression]-
dynamics, 
effects, etc. 

25 Hz tempo, Prerecorded MIDI 
dynamics score 

- tempo, Prerecorded MlD 1 
dynamics score 

- tempo, Prerecorded MIDI 
dynamics, beat score 
pattern, beat 
style, 
accentuation, 
timbre 

1 KHz for tempo, Prerecorded MIDI 
position dynamics, score 
sensors (low articulation 
intensity), effects 
20 Hz for all 
other 
sensors 

- Tempo, Prerecorded MIDI 
dynamics, score 

Articulation 

Gesture 
Understanding 
System (left hand) 

Performance 
Communication 
System 

MIDI control unit 

Turbo Pascal 5.5 
software, VISCA 
Vision Card 

Max and Maxnet 
programming 
environ ment, 
three alternative 
analysis algorithms 

-

Max patches 

HMM [Hidden 
Markov Model] 
Movement 

contain a self-
evaluation algorithm 
which recorded 
results for next 
perfonnance 

Research 

Research / 

First system to use 
neural networks for 
beat analysis 

Research, 
performance / 

First system to use 3d 
tracking 

Research, 
performance, 
educational/ 

System distinguished 
by a variety of 
sensors combined in 
a single baton 

Research, 
perfonnance, 
educational! tirst 
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of an orchestra), intensity, eye 
2 acceleration gaze direction 
scnsors, 
breathing sensor, 

1999 Conductor Following I1momen, Datasuit with 3D positional -
with Artificial Neural Takala 6dof sensors information 
Networks (replaced with for the body 

accelerometers 
in demo for cost 
reasons) 

1998 Conductor's Jacket Marrin, Jacket: 4 EMG, Main: muscle 330 Hz-
/ / Picard / 1 respiration, tension 4KHz 
2000 lnside the Conductor's Marrin 1 heart rate, Secondary: 

Jacket 1 temperature, breath 
1 Galvanic skin intensity, heart 
response sensors rate, skin 

response 

2000 Virtual Dance and Segen, 2 cameras Right arm 30 fps 
Music Conducted by a Majumder, positional 
Human Conductor Gluckman information 

(3d space) 

2002 Personal Orchestra Borchers, Buchla Rightarm 30 fps 
Samminger, Lightning baton positional 

Muhlhauser information 
(2d space) 

2003 Computer Vision Murphy, Video cameras Right arm 30 fps 
Andersen (direct/profile) positional 
Jensen information 

(3d space) 

etTects, 
phrasing 
(corresponds 
to breath 
intensity) 

Tempo, Prerecorded MID 1 
articu lation score, 3D graphics 

(orchestra) 

Tempo, Prerecorded MIDI 
dynarnics, score 
articulation, 
accents, meter, 
pulse, vibrato, 
numberof 
voices, 
hannonic 
colorations, etc 

tempo Synchronized 
prerecorded MIDI 
and video 

tempo, Synchronized 
dynamics, prerecorded audio 

instrumentatio and video 

n 

tempo Prerecorded audio, 
3D graphics(baton) 

Recognition system 

ANN [Artiticial 
Neural Network 1 
analysis system, 

FastTrak 6DOF 
sensor system 

Two networlœd 
computers 
analyzing system: 
• Labview 
'Visual Dev studio 
*Rogus MIDI 
library 

GeslUre recognition 
system, dance 
sequencer and 
music sequencer 

Java server 1 client, 
Quicktime 

Computer Vision, 
EyesWeb, Mixxx 

system to use HMMs 

Research, 
performance / 

First system to use 
high-precision 6dof 
positional sensors 

Research, 
performance, 
educational/ 

No positional 
sensors, info received 
through muscle 
tension, extensive 
analysis of geslUral 
information 

Perfonnance / 

Primarily designed 
for synchronization 
of music and dance 
during performance 

ReseaTCh, exhihition, 
performance / First 
system to use audio 
time-stretch 
algorithm 

Research 
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Chapter 3 

Gesture Analysis and 
Performance 

This chapter deals with the overall design of the Gesture Analysis and Perfor­

mance components of the described system. Whereas the Gesture Analysis 

part of the system is implemented as a link between the user input and pro­

cessing of extracted positional data stream and is also used together with 

Gesture Recognition system, the main purpose of the Performance compo­

nent of the system is mapping of elementary conducting gestures to changes 

in prerecorded audio/video output during a realtime interactive performance. 

3.1 Gesture Analysis 

Gesture Analysis part of the system was developed as a set of tools to be 

applied to hand movement tracking, extraction of positional data stream, 

and identification of beat-indicating transition points and beat amplitude in 

right-hand gestures. 

27 
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Figure 3.1: Lana Lysogor, a doctoral conducting student, performing with 
the Gesture Analysis and Performance components of the system. 

3.1.1 Image input 

Gesture image tracking is done with two inexpensive Logitech QuickCam 

Messenger USB cameras, placed in front and profile view of the user. The 

cameras are used to follow the image of the user's hand movements, with the 

user wearing a color glove on the right hand (or/and left hand) to facilitate 

the tracking process. Whereas for practical reasons the USB camera input 

was chosen as a low-cost solution, the described system is built to also be 

compatible with higher precision six-degrees-of-freedom (6DOF) positional 

trackers for use in further research. 
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3.1.2 Image Processing with Eyesweb Software 

The front and profile view images obtained by the cameras are used for fea­

ture extraction by Eyesweb, an image processing software that was developed 

at DIST, University of Genoa, ltaly (Camurri et al. 2000) and has been used 

in numerous interactive multimedia installations, including the Computer 

Vision system (Murphy, Andersen, and Jensen 2003). Image acquisition and 

processing is handled in the Eyesweb patch using blob colour tracking tech­

niques. At the initialization stage, the intended tracking regions of the color 

glove is selected by the user clicking with a mouse on the incoming image 

regions. An internaI color blob tracking object in Eyesweb, which is the core 

of the image processing patch, then extracts two-dimensional positional coor­

dinates of the center of the tracked region and passes their values to Eyesweb 

network data transfer objects. As feedback to the user, the patch displays 

the full incoming image from the camera as well as the resulting image that 

contains the tracked color regions only. The incoming image is also recorded 

by the patch in a video file, which cou Id be later used for offiine processing 

of the user's gestures. 

3.1.3 ose network 

The Eyesweb patch sends out its output stream to Max/MSP software via 

Open Sound Control (OSC) network (Wright 1998). The network provides 

a connection between the Eyesweb patch installed on a PC computer, and 

Max/MSP / Jitter software that is run in a Mac OsX environment. The con­

nection between the two comput ers is established directly through a crossover 

network cable. Four positional streams, two per hand (horizontal and ver-
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tical), are sent out on four separate OSC channels. Eyesweb network OSC 

objects are used as servers, and MaxjMSP external OSC objects are used as 

clients. 

3.1.4 Positional Data Filtering 

One of the problems associated with the incoming data stream was that the 

values were coming into the MaxjMSP patch from the Eyesweb environment 

at irregular intervals. A pk. 'T'esample external object was written to resample 

those values into a regular flow data stream, according to a specified resam­

pling rate (no value interpolation was implemented). Another object caIled 

pk. velacc was written to calculate velo city values for horizontal and vertical 

movement, as weIl as vector velo city and acceleration of the movement. 

In the course of experimenting with the system, it was also discovered 

that the positional information stream received by the Max patch contained 

a substantial amount of jitter, caused both by slight errors in hand movement 

tracking by Eyesweb objects and slight variations in the natural hand move­

ment that are not perceived by the human eye but are nonetheless present in 

human movment. Therefore, sorne kind of filtering needed to be implemented 

in the system. A low pass filtering technique, used for cleaning of the posi­

tional data in Motion Analysis and Mapping to Music project (Bevilacqua, 

Ridenour, and Cuccia 2002), was applied to the current problem. The filter, 

designed through a set of internaI objects in MaxjMSP, calculates a running 

average using a number of input points, which results in unwanted jitter data 

being filtered out of the system. Since the frame rate of the input cameras is 

25 fps (40Hz), which is substantiaIly lower than the rate of the Vicon motion 
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capture system used in the Motion Analysis and Mapping to Music project, 

a 6-point (instead of a lü-point, as in referred project) running average filter 

was implemented to avoid excessive filtering and latency in the system. The 

filtered data stream is sent to the beat/amplitude extraction subpatch. Both 

the filtered and unfiltered data streams are sent as graphic points to four 

separate displays in the Max patch, and there a clear visible improvement in 

the case of filtered information. 

3.1.5 Recording of Positional Information 

As an optional feature, a separate Max patch was designed to be responsi­

ble for recording of positional data stream. In the record mode, the data 

is stored in a table file and included time stamp information and horizontal 

and vertical positional value streams for both hands. In playback mode, the 

recorded positional information can be played in order to control the perfor­

mance of the score by itself, without extracting it from the video recordings 

in the Eyesweb patch. 

3.1.6 Beat Transition and Amplitude Extraction 

One of the main responsibilities of the Gesture Analysis component of the 

system is to extract beat amplitude and beat transition points from the right­

hand conducting gestures based on maxima and minima of their absolute 

positional values. Those values are extracted from the positional coordinate 

streams that are received from the Eyesweb patch. Beat transition point 

extraction was done by a pk. beatrecognize external object, which detected a 

beat every time there was a transition from the downward to the upward 
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:rnonlto,] o 

Figure 3.2: Positional data displays in the Gesture Analysis Max/MSP patch: 
front signal raw (upper left) and filtered (lower left)) profile signal raw (upper 
right) and fil tered (lower right). 
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vertical movement of the right hand. 

In order to avoid false beat detections which would occur due to noise in 

positional data stream caused by minor fluctuations in positional values (that 

were greatly reduced by the running average filter), a pk.fllter object was 

implemented. The object accepted an argument which set a minimal time 

interval in milliseconds required to occur between consecutive beat detections 

in order for the detected beat to pass through the object. The time interval 

value 50 ms was found to be appropriate to most situations and was used in 

aU of the experiments with the system. 

At the beginning of the conducting performance, it is natural for a con­

ductor to conduct a subbeat before the music entrance at the first beat. In 

order to avoid the frequent problem of the system mistaking the subbeat 

for the first beat, another filter was implemented with a set of internaI Max 

objects. In it, an incoming 'bang' message (signifying a beat detected by 

the previous objects in the chain) would only be let through if the differ­

ence between the maximum vertical position value that occurred during the 

beat and the very first positional value recorded at the beginning of the beat 

(which corresponds to the minimum vertical value of the beat) is greater than 

the threshold value specified by the user. In order words, the beat is only 

detected if the right hand travels in the upward direction before the direction 

is changed from downward to upward. This filter successfuUy eliminates the 

first subbeat problem. 

Right- and left-hand amplitude extraction was implemented with a set 

of internaI Max objects. For right-hand beat amplitude, the main control 

variable was the vector length of the tracked path of the right hand in space 
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that would be recorded between consecutive beats. Since different beats 

vary in form, and therefore also in length of the positional path they travel, 

each individual beat is only compared to its corresponding beat from the 

last measure. Each time a beat occurs, the calculated vector path value 

for the new beat is divided by the path value of the previous beat, and 

the result is multiplied by the result of the same calculation done for the 

previous beat (the original value of the result would be set to 1). However, 

one of the requirements for the system to work is that the four beats of the 

first conducted measure are be conducted in a uniform fashion in terms of 

dynamics, since their values would serve as a reference to the beats in all 

of the consecutive measures. Alternatively, the values for the vector path 

lengths can be prerecorded prior to the use of the system and be used as 

reference values. 

Left-hand amplitude level is calculated by direct mapping of the vertical 

value of the left hand on the video screen to the amplitude level of the score, 

with the option of maximum and minimum volume level values corresponding 

to the highest and lowest positions of the hand. The new left-hand amplitude 

value is then averaged with the extracted right-hand amplitude, and the 

resulting value is sent to the audio output level of the patch. 

3.2 Gesture Performance 

Gesture Performance element of the system is primarily responsible for map­

ping the identified beat transition points and beat amplitude values to mod­

ifications in playback speed and volume of the audio score that is being 

conducted by the user. 
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3.2.1 Calculation of speed modification 

To compute adjustments between user's beat indications and audio playback 

speed, audio stretching calculation algorithm was used. The developed al­

gorithm was similar to the one first implemented in (Borchers, Samminger, 

and Muhlhauser 2002) where it was developed on the basis of techniques that 

were originally used to synchronize computer docks over the network. It can 

be summarized in the following procedure: 

Step 1. Every time a new beat is detected, calculate the value of the 

speed with which the user has conducted the last measure: 

bs - b~ 
VI = b - b' , 

u u 
(3.1) 

where bs is the original position of the beat in the score, b~ is the original 

position of the previous beat, bu is the time of the incoming detected 

beat, and b~ is the time of the previous detected beat. 

Step 2. On the basis of value of VI, calculate the value of adjustment 

speed: 
VI . 6..t 

112 = tu + 6..t _ bs' (3.2) 

where 6..t is the user-specified catchup position interval for the actual 

score position to become synchronized with the desired score position 

in the future and tu is the position until which the score was conducted 

by the user. 

Step 3. Throughout the execution, a runtime loop computes the value 

of tu as: 

tu = ( + VeuT· i, (3.3) 
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where t~ is the previous value of tu before the actual computation, VeuT 

is the current speed (initially set to 1) and 'i is the interval between 

the loop executions in ms (in this case, i was equal to 1 ms). If the 

condition tbu > !:it is true (tbu being the position to which the score 

was conducted at the current speed since the beginning of the current 

beat) , then VeuT was set to VI, otherwise VeuT = V2. This way, if the 

synchronization of the position on the score and position of the user's 

beats occurs before the end of the current beat, the current speed is 

set to the speed at which the user is conducting, as there is no need for 

further adjustments until the next detected beat. 

In the described system, the calculations were implemented by the exter­

nal pk.coexcalc object. The object accepted bang messages in its left inlet 

and the values of corresponding beat positions on the audio score in the right 

inlet. It then calculated the time compression / expansion ration and sent 

it continuously out the left outlet. The current calculated position on the 

audio score is sent out of the right out let of the object. 

3.2.2 Recording of Beat Values 

In order to prepare an audio score for performance with the described system, 

a beat recording patch is used at the preprocessing stage. Beat indications are 

tapped in by the user during the playback of the audio file, and their relative 

time values are recorded in a separate table file. During performance, the 

table values are then supplied to the pk. coexcalc object which uses them as 

reference beat values for tempo adjustment calculation. One of the much 

needed future improvements of the system would be an implementation of a 
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realtime beat recognition object. 

Object Name Component Stage Function 
pk.resample Analysis Input resample the incoming stream 

of data according to a user-
specified rate 

pk.diff Analysis Data calculate running difference 
Analysis between incoming data values 

pk.velacc Analysis Data calculate horizontal, vertical and 
Analysis vector velo city and acceleration 

based on horizontal and vertical 
position values 

pk. beatrecognize Analysis Beat detect beat transition based on 
Tracking direction changes and velo city 

of vertical positional data 
pk.filterbangs Analysis Data only allow a single occurance of 

Filter detected beats through within 
a user-specified interval 

pk.coexcalc Performance Data calculate the current speed 
Mapping required to catch up with position 

in the audio file based on incoming 
beat transitions 

Table 3.1: External objects written for Analysis and Performance system 
components. 

3.2.3 Video output 

As an optional feature, a prerecorded video score can be used as visual 

feedback to the user simultaneously with the corresponding audio score. 

Video score tempo modification is done by internaI Jitter environment ob­

jects. Since video stretchingj compression can be easily done by drop­

pingjrepeating the frames without visible artifacts (given that the frame 
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rate is high enough), there were no problems associated with its implemen­

tation in the system. A video (and audio) recording of Mc Gill Symphony 

orchestra rehearsal1 was used with the system. Since the main goal of the 

system is directed towards recognition of expressive gestures, video playback 

is not part of the final system implementation. However, it has been devel­

oped to be used as feedback to the user and the audience during interactive 

performances with the system-it could be displayed through an overhead 

projector or a monitor on the wall in front of the user to simulate the presence 

of an orchestra. 

3.2.4 Time Compression/Expansion Using the Phase 
Vocoder 

The resulting time compression/expansion value was sent to audio/video 

output patch. For actual audio adjustment, several techniques were tried 

out. Initially, an external tap.shift object was used, which was part of the 

Tap Tools package developed by Tim Placew for Max/MSP environment. 

Whereas the tap.shift object is able to change audio speed in realtime, it 

produces audible artifacts caused by speed adjustments that deteriorate the 

quality of the output sound. The technique that provides the best per­

formance is an internaI object implementation of phase vocoder techniques 

in Max/MSP. Due to spectral prebuffering of the audio score used by this 

method, the patch is able to make smoother tempo adjustments. 

1 Recorded in November 2003 at Pollack Hall, McGill Strathcona Music Building. 
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Overview of Phase Vocoder Technique 

Phase vocoder can be defined as a channelized analysis-resynthesis tool that, 

through a number of techniques, measures and stores spectral signal data in 

different frequency bands, and then uses those values to modify and recreate 

the signal in time domain. Most of the phase vocoder systems use Short Time 

Fourier Transfrom (STFT) for analysis and resynthesis of the signal. The 

concept of a phase vocoder was introduced in 1939 by Dudley in his "channel 

vocoder" system (Dudley 1939) as a voice co ding tool, and then extended by 

Flanagan and Golden (Flanagan and Golden 1966) and became known by its 

current name of "phase vocoder" through their work. A number of further 

accomplishments and improvements were made in design and implementation 

of phase vocoder technique (eg. (Depalle and Poirot 1991), (Fischman 1997), 

(Laroche 1998), (Laroche and Doison 1997)). 

The two most popular applications of a phase vocoder are time scal­

ing (used in the described system) and pitch-scaling. Time scaling refers 

to changing the length of a signal while keeping the original frequency, 

which is done by interpolatingj decimating the signal in the frequency do­

main before resynthesis. Pitch scaling, or changing the signal's frequency 

without affecting its length, is implemented through a combination of over­

samplingjundersampling the signal in time do main prior to analysis stage 

and time-scaling the signal to its original length. 

Phase Vocoder Implementation in Max/MSP 

A phase vocoder system was implemented as a patcher in MaxjMsp environ­

ment. The Short Time Fourier Transform (STFT) analysis and resynthesis 



CHAPTER 3. GESTURE ANALYSIS AND PERFORMANCE 40 

stages are implemented by using internaI MSP pfft- object. During the pre­

processing stage of the phase vocoding process, the input signal from the time 

buffer is processed by STFT and recorded into a spectral buffer. Windowing 

and the overlap ratio are the two important factors which affect the quality 

of the signal at the resynthesis stage. During the performance stage, the 

signal stored in spectral buffers is readjusted and resynthesized by the pffÇ 

object to provide a time-domain output of a different duration. One of the 

main drawbacks of using an internaI implementation of the Phase Vocoder in 

Max/MSP is linked to the realtime nature of the MSP environment: it does 

not provide the tools to transform a loaded audio buffer into a spectral buffer 

instantaneously-instead, the file has to be played back by the patch from 

beginning to end prior to the actual performance in order to be loaded into 

the buffer. An alternative solution of storing the spectral buffer in a separate 

file itself does not provide good results, due to the fact that the signalloaded 

in the spectral buffer is not normalized (which is usually done during the 

inverse FFT stage), and gets altered if saved into a file and then reloaded 

into the buffer. Another required improvement of the Performance element 

of the system would involve implementation of an external Phase Vocoder 

object in MSP that would be able to load the signal into the spectral buffer 

in non-realtime. 



Chapter 4 

Gesture Recognition 

Recognition of isolated and continuous gestures implemented in the system 

is based on Hidden Markov Model procedure. This statistical observation 

sequence analysis process, widely known for its use in speech recognition, 

has been also used in score following and sign language gesture recognition 

systems, and has been applied to right-hand beat conducting recognition 

in Multi-Modal Conducting Simulator (Usa and Mochida 1998a), (Usa and 

Mochida 1998b). 

Whereas there already exist several objects for Max environment that 

implement sorne of the HMM aspects, their functionality is specifie to the 

goals of the projects they were developed for and does not provide the full 

scope of HMM capabilities. The main goal of the current implementation 

was to design an object that would provide the full functionality of a discrete 

HMM model (training, finding optimal sequence of states and recognition), 

and for the object to be general and straightforward enough not to be limited 

to this project, but rather be available for general use in Max/MSP software. 

The resulting source code of the object could be easily adjusted to be used 
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as a class in a different environment. 

This chapter discusses the details of implementing the HMM model and 

its supporting components as a set of external objects in Max/MSP (known 

as the HMM Max/MSP Package), which was done using aU of the described 

HMM techniques. Whereas there exist a number of alternative methods of 

calculation of the HMM procedures described in the chapter, the formulae 

presented here were coUected from different sources as an optimal set of 

computations for practical implementation of HMM functionality. A detailed 

description of HMM techniques is provided in Appendix A. 

4.1 HMM Package in Max/MSP 

Since none of the existing external HMM objects written for Max environ­

ment provided the functionality required for the system, a set of external 

HMM objects was implemented in Max. 

4.1.1 HMM External Object in Max 

The object was written as a representation of a discrete HMM model and 

served as an implementation of its three principal features-Iearning, finding 

an optimal sequence of states and recognition. 

The number of states, labels and the type of the object (0 for ergodic, 1 for 

left-to-right) are specified during its initialization by typing it as arguments 

in the object box, in the order they are described here. The fourth argument 

accepted by the object box is the maximum number for the array that records 

the incoming labels the object can accept at a time. Those characteristics can 

only be changed by reinitializing the object by changing its arguments in the 
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box (or importing another recorded model into the current one), sinee they 

are directly responsible for the amount of memory allocation for the arrays 

used by the object. If no arguments are supplied after the object name, it 

defaults to a 5-state 10-label ergodic model with 200 as the maximum size 

for the internaI array of numbers recorded from the incoming stream. 

r~I~1.1(hrl1lllp 

Figure 4.1: A 10-state 20-labelleft-to-right HMM object in Max/MSP. 

The current mode of the object can be changed by sending an input to 

its right inlet~O for training the model, 1 for recognition mode, and 2 for 

the Viterbi functionality. By default, the object is initialized in the training 

mode. 

The object accepts an incoming stream of numbers in its left inlet and 

records them in an internaI array in the order they are received. When a bang 

message is reeeived in the left inlet, the labels stored in the internaI array 

are passed to one of the object's algorithms~training, recognition or Viterbi, 

based on what mode it is currently in), and the internaI array is cleared in 

order to be ready to accept the next stream of numbers. For the training 

algorithm, multiple scaled reestimation formulae are used to calculate the 

new model parameters, and the array of numbers is then stored in the object 
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so that it can be used during the next training procedure together with 

all of the previously recorded and the new incoming training array. For 

the recognition algorithm, probability is calculated using scaled forward and 

backward probability computations (ref), and the result-which will always 

be in the range of -00 < P(OIÀ) ::; 0, since it is a logarithm of the actual 

probability-is passed on to the leftmost out let of the object. For the Viterbi 

algorithm, the scaled Viterbi computations are used to generate the most 

probable sequence of states based on the incoming array, which is then passed 

as a list to the middle out let of the object. 

A deletelast message to the left inlet of the object deletes the last train­

ing array from its memory, and retrains the model with all of the training 

observations that were recorded previously to the one that was deleted. 

The object stores the information about the model which can be then 

viewed, imported or exported as a list, and written to or read from a file. 

The information is stored in the following format: 

number of 
trainings 

transition state label training 
matrix output matrix observations 

Table 4.1: Storing format of an HMM model. 

N umber of states, number of labels, type and number of trainings are 

each represented by a single integer number. State transition and state label 

output matrices are represented as arrays of numbers, with each of the rows 

of the matrices placed in left-to-right order. There is no separation needed 

between the two matrices, since their dimensions are specified by the 'number 

of states' and 'number of labels' values-for example, a 5-state lü-label model 
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will have a 5X5 state transition matrix represented by an array of 25 values, 

and a 5XI0 output matrix represented by an array of 50 values. Training 

observations are stored after the two matrices, with each observation being 

in the following format: 

number of labels observation array -l(to indicate the end 
in this observation of the current observation) 

Table 4.2: Storing format of an individual training observation. 

Double-clicking on the object box opens a text edit or which displays 

the current model information. A read message to the left inlet of the ob­

ject opens a 'read file' dialogue so that a previously recorded model can be 

loaded into a current object. A read <filename> message results in reading 

the file from the same directory the current Max patch with the object is in. 

Similarly, write message opens a write file dialogue, and write <filename> 

writes the specified file in the same direct ory as the Max patch. The model 

information can be also imported and exported as a list within the patch-an 

export message sends out of the current model data through the rightmost 

out let of the object in a list format, and an import <list> message (where 

<list» is a list containing model information) loads the new model infor­

mation into the object. Therefore, it is possible to pass model information 

between several objects in the same patch by sending an export message to 

one object, appending the word import to the li st that gets generated as the 

output, and sending it to another HMM object in the patch, which could be 

useful in sorne applications. 

The post 1 and post 0 messages turn on and off the addition al information 
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about the training, recognition and Viterbi computations to be printed in the 

Max window. 

4.1.2 Other objects of the HMM Package 

Two supporting external objects were written in addition to the main HMM 

object for the current system. The orient2d is responsible for calculation of 

positional orientation-it accepts a relative change in horizontal positional 

data in its le ft input and relative change in vertical positional data in the 

right output, calculates the positional orientation based on those values, and 

outputs the result from the right output in degrees (in the range of 0-359) 

and out the left output in radians (0 - 27f). 

The code2d object is responsible for the elementary vector quantization 

of the positional data stream. It divides the incoming positional data stream 

with a larger number of possible values (0-359 in this case) in a number of 

sectors, the number being determined by the desired number of labels for the 

HMM model object, and assigns that label to each incoming number within 

that sector. For example, a code2d object with 20 and 360 as its respective 

label size and maximum incoming data size, divides the range of 0-360 in 20 

sectors, assigns the labels of 1 to 20 to each respective sector, and outputs a 

corresponding label for each incoming orientation value. 

For future projects using the HMM object in Max/MSP (such as speech 

or music data recognition), or for advancements in the current project that 

would require a more complex quantization technique, other external objects 

will have to be written to pro duce the desired label stream that will serve as 

the input to HMM external objects. 
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4.2 Testing the HMM Objects 

In order to verify the ability of the designed HMM package objects to cor­

rectly identify input gestures based on HMM training and recognition tech­

niques, several tests were carried out. Left-to-right 5-state 10-label HMM 

models were used in all of the testing examples. 

4.2.1 Symbol Recognition with a MousejWacom Tablet 

Recognition of English Alphabet symbols was the initial task for the system 

developed with the external HMM objects in order to test its performance. 

Absolute 2-D positional coordinates extracted from the movement of the 

mouse or a Wacom tablet were used to calculate the orientation values with 

a orient2d object. Resulting data stream was then passed to the code2d 

object that mapped the observation stream to a label data stream. Each 

of the HMM objects that were implemented in the system represented an 

isolated symbol to be recognized. At the learning stage, HMM objects were 

individually trained with 10 symbol examples. At the recognition stage, an 

observation stream representing a symbol was passed to all of the HMM 

objects, and the one producing the highest probability was considered as the 

recognized symbol. There were five observation examples of each symbol 

provided for recognition, and the system performed with a 92.5% recognition 

rate. 
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Figure 4.2: HMM symbol patch with a Wacom tablet input-recognition 
process. 
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4.2.2 Symbol Recognition with USB Cameras and Eye­
sweb 

The procedure used by the symbol recognition system was then replicated 

using a single webcam to capture a 2-D positional user input. Gesture Anal­

ysis component of the system was used to extract and transfer the positional 

information from the video input to the recognition patch. Five English al­

phabet symbols (A,B,C,D,E) were used for training and recognition. As in 

the previous experiment, there were 10 training and 5 recognition sets per 

gesture. 

Resulting recognition rates were lower than those obtained in the previous 

experiment. In particular, the capital symbol 'D' was repeatedly mistaken 

for a 'B', whereas aIl of the other symbols (that did not share positional 

similarities, as in the case of those two symbols) were correctly identified. 

This can be explained by the fact that Eyesweb has a faster recognition 

rate than the one used by the mouse tracking object, and the visual gesture 

symbolizing the symbol was performed during a longer period of time than 

writing it in with a mouse. Therefore, the left-to-right object did not contain 

enough states to represent aIl of the positional transitions, and considered the 

symbol 'D'as the upper part of the symbol 'B' ,whereas it did not contain 

enough available states to represent the lower part. On the basis of this 

observation, it was decided to use 10-state models for aIl of the HMM models 

during the actual conducting gesture recognition experiments. 
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Figure 4.3: HMM symbol patch with Eyesweb input-training process. 



Chapter 5 

System Implementation and 
Results 

This chapter describes a set of experiments conducted with the final system 

that was designed based on implementation of its individual components­

analysis, performance and recognition-discussed in detail in previous chap­

ters. 

5.1 System Experiments with Conducting Ges­
ture Recognition 

AlI of the conducting gestures used for positional recordings were performed 

by a doctoral conducting student at the Music Faculty of McGill University. 

AlI of the conducting gesture recordings were do ne by the Gesture Analysis 

component of the system using the Eyesweb software with two USB cameras 

that were placed in front and profile view of the conductor. The recorded 

session files were later edited using the Adobe Premiere 6.5 software in order 

to prepare them for use with the recognition patches in MaxjMSP (editing 

involved deleting unnecessary beginningsj endings of the files, and splitting 
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larger session files into training and recognition parts). For positional data 

retrieval and transfer, Gesture Analysis provided the required functionality, 

as in the case of the Analysis and Performance system. The HMM objects 

that were used in Max for all of the gesture recognition experiments were 

based on a 10-state 20-label left-to-right model. The choice of the model 

type was based on the fact that the left-to-right model is known to perform 

well in situations when the length of the incoming data stream for the same 

gesture may greatly vary from example to example, which is likely to occur 

in the case of conducting gestures. 

5.1.1 Left hand Expressive Gestures 

Five left-hand isolated expressive gestures were selected to be recognized­

crescendo-cutoff, diminuendo-cutoff, fermata-click gesture, accent indication 

and expansion gesture. The set of gestures was intentionally chosen to con­

tain both simple (accent, expansion) and complex( crescendo+cutoff, diminu­

endo+cutoff and fermata+click) gestures in order to test the system's ability 

to cope with both kinds of gestures simultaneously. 

For each of the five gestures, 20 training sets and 10 recognition sets were 

recorded as two synchronized movie files for front and profile views, and 

then split into 30 individu al file pairs using video editing software. In the 

recognition component of the system, five HMM object pairs were assigned 

to correspond to the gestures. Each HMM object pair was then individually 

trained with the 20 training video segments. Upon complet ion of the training 

process, 50 examples (10 examples per gesture) were presented for recogni­

tion to the entire set of the HMM objects. The recognition scores of the 
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Figure 5.1: Front and profile camera view of the user training the recognition 
system with a left-hand crescendo-cutoff expressive gesture. 

pairs of HMMs were combined (through simple addition of the logarithms of 

probabilities), and compared to find the maximum logarithm value, which 

indicated the gesture that was considered as the most likely to correspond 

to the incoming positional data stream. 

Table 5.1 presents the results of the recognition experiment: 

Gesture Trained (no.) Tested (no.) Recognized (no.) 
Crescendo+Cutoff 20 10 10 
Diminuendo+Cutoff 20 10 10 
Fermata+Click 20 10 9 
Accent 20 10 10 
Expansion 20 10 10 

1 Total 
1

100 1 50 1 49 (98% rate) 

Table 5.1: Left-hand expressive gesture recognition. 

From the table, it can be seen that the gestures were recognized with a 

high degree of accuracy. In fact, those gestures presented a real challenge to 

the HMM models, since they shared many of the positional characteristics. 
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For example, the complex fermata-click gesture (which is described in detail 

in (Rudolph 1994)) is a combinat ion of a fermata indication, followed a 

short 'click' or 'breath', followed by an entrance indication. The positional 

information received from the middle part of the fermata-click gesture is 

very similar to the simple accent gesture. Nonetheless, the HMM objects 

were able to distinguish the differences between the gestures. In the only 

incorrect recognition case, where a fermata-click gesture was identified as 

an accent, it actually looked more similar to an accent, and could be easily 

mistaken for an accent by an actual musician with knowledge of conducting 

gestures. 

5.1.2 Expressive Styles of Right Rand Beat Indicating 
Gestures 

For right-hand beat indicating gestures, three sets of beat patterns were 

chosen-the first set containing a four-beat expressive legato and four-beat 

light staccato patterns, the second with a three-beat expressive legato and 

three-beat light staccato, and the third set with a two-beat legato, two-beat 

marcato and two-beat staccato patterns. A separate HMM object pair was 

used to represent each beat gesture of the described patterns-so there were 

four HMM pairs for each pattern of the first set, three for each pattern of 

the second set, and two for the third set. For each beat pattern, 20 measures 

of continuous conducting was recorded for gesture training purposes and 

10 measure of contunuous conducting for gesture recognition. In this case, 

instead of manually splitting the video files into individual segments for each 

beat of each pattern, the temporal segmentation process was performed by 
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using the beat identification part of the gesture analysis component of the 

system. A loop was performed during the execution where every time a beat 

was detected, the incoming positional data stream was rerouted to the HMM 

pair representing the next beat, and when the last beat of the beat pattern 

was reached, the first beat HMM pair was chosen for the next training stage. 

Gesture Pattern Beat Trained Tested Recognized Recognized 
(no.) (no.) (no.) (Individual) (Set) 

4-beat expressive lst 20 10 10 10 
legato 2nd 20 10 10 10 

3rd 20 10 10 10 
4th 20 10 10 9 

light lst 20 10 10 10 
staccato 2nd 20 10 10 10 

3rd 20 10 10 10 
4th 20 10 10 10 

3-beat expressive lst 20 10 10 10 
legato 2nd 20 10 10 10 

3rd 20 10 10 10 
light lst 20 10 10 10 
staccato 2nd 20 10 10 10 

3rd 20 10 10 10 

2-beat neutral 1st 20 10 10 10 
legato 2nd 20 10 10 10 
marcato 1st 20 10 10 10 

2nd 20 10 10 10 
light 1st 20 10 10 10 
staccato 2nd 20 10 10 10 

Total 7 20 400 200 200 199 
(100% rate) (99.5% rate) 

Table 5.2: Recognition of Expressive Styles of Right-hand Beat-Indicating 
Gestures. 

After aIl of the three sets of beat patterns (representing 7 different beat 
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patterns and 20 different beat model pairs) were trained, 10 measures for 

each beat pattern were presented to the system for gesture recognition. The 

recognition for each beat pattern was done twice-at first, by comparing the 

scores of the HMM pairs corresponding to different beats of the current beat 

pattern only, and then by comparing the scores of the models representing 

the beats of the entire set. 

It is clear from the Table 5.1.2 that the system provided a robust recog­

nition of right hand beat-indicating gestures, both in terms of correctly iden­

tifying the individual beat information within a single beat pattern, and 

distinguishing between different styles of conducting using the same meter 

value. Although the recognition system does provide an option of comparing 

the scores of HMMs for all of the sets and beat patterns, this comparison was 

not included as part of the experiment, since from the general knowledge of 

conducting it is obvious that there is not enough difference between the beats 

of the same conducting style (legato, light staccato) but different meter to 

differentiate between them. For example, the third beat of a 3-beat legato 

and the 4th beat of a 4-beat legato are visually and positionally indistin­

guishable. If such a functionality would be desired in the system, it would 

have to include information about the previous detected beat into the co ding 

process for label assignment for the HMMs. 

5.1.3 Embedded Right hand Expressive Gestures 

Since the right hand is known to be mainly responsible for time-beating 

indications throughout the performance, the right hand expressive gestures 

have to be incorporated into the beating gestures-unlike the left hand that 
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has more freedom of movement and is not constrained with the baton (if it 

is being used). Therefore, in order to extract right hand expressive gestures, 

either transitions from one type of beat to another or different forms of the 

same basic type of beat should be analyzed. 

The gestures were studied on examples of graduaI crescendo and diminu­

endo indicated through graduaI increasej decrease in the amplitude of individ­

ual beat indicating gestures. Three different cases were studied-a graduaI 

crescendo (one measure span) on a four-beat legato, a graduaI diminuendo 

(one measure span) on a four-beat legato, and no dynamics on a four-beat 

legato. In this case, each of the HMM model pairs represented the entire 

measure and not an individual beat in the measure as in the previous exper­

iment, so that it would be possible to track changes in beat amplitude over 

the four beats. Therefore, this system variation contained three HMM pairs, 

one per beat pattern. 

The graduaI crescendo and graduaI diminuendo patterns were not recorded 

as isolated gestures-rather, they were conducted in a continuous manner, 

in spans of 20 measures for training and 10 measures for recognition. AI­

though in real-life performance, those gestures would indicate a transition 

from one dynamic level to another and would not occur in the repeated 

manner that they were recorded in, this way of recording the gestures al­

lowed for automatic temporal segmentation and training with the gesture 

analysis component of the system. In this case, no rerouting of the input 

signal in realtime was needed (as it was done in the continuous right-hand 

gesture experiment), and a new training would occur every new measure (at 

the end of every fourth beat) , and not at the end of every beat as in the 
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previous experiment. 

Gesture Trained Tested Recognized 
(no.) (no.) (no.) 

GraduaI Crescendo (4-beat legato) 20 10 10 
GraduaI Diminuendo (4-beat legato) 20 10 10 
No Dynamics (4-beat legato) 20 10 10 

1 Total 
1

60 1 30 1 30 (100 % rate) 1 

Table 5.3: Right hand expressive gesture recognition. 

Since in this case only three long patterns were analyzed, and their posi­

tional relative paths were clearly different by comparison to each other, it is 

not surprising that the system was able to distinguish the gesture transition 

patterns with a perfect recognition rate. 

5.2 Combined Gesture Analysis, Recognition 
and Performance 

All of the three components of the system were combined in order to test 

gesture recognition with realtime performance. An audio file of the 2nd 

movement of Mozart's 12th symphony was conducted by the user, and the 

HMM models that were trained as described in section 5.1.2. Initially, the 

results were incosistent and did not provide the recognition rates expected 

based on the previous experiments. U pon examination of the situation, it 

became clear that the main difference between gesture recognition based on 

prerecorded video files and realtime video inputs was that the positional data 

rate generated by the Eysweb positional tracking object was much lower 

in the latter case, due to the load of processing multiple video inputs in 
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realtime. Another factor that contributed to the problem was that whereas 

the HMM models were trained with the positional data filtered through a 

6-point averaging low-pass system, the data was not filtered in the case of 

realtime performance to avoid latency issues, which were already present in 

the performance system-therefore, the data characteristics received by the 

HMM models during the recognition pro cess was different from the positional 

streams that the models were trained with. A solution to this problem was 

tried where the 6-point averaging filter was added to the system and sent 

its information to HMM models, whereas the beat recognition pro cess was 

operating on a separate path with the direct unfiltered data. Since there 

was a time difference between the beat identification and gesture recognition 

data due to the averaging filter, the detected beats were delayed by 240 ms 

(equivalent to 5 frames of positional data) before being sent to the recognition 

models to identify the beginning of the recognition process. 

Whereas the input processing part of the patch was often unstable due to 

software/hardware limitations, the HMMs were able to recognize the incom­

ing gesture data with a high degree of accuracy during those cases when an 

acceptable number of positional frames was received-the system performed 

with a 94.6% recognition rate over the 73 measures (and 294 beats of data), 

with comparison being do ne between the four possible gestures in the 4-beat 

legato pattern. 

Those issues identified the fact that for realtime HMM recognition pur­

poses, a higher-rate lower-latency input processing system is needed. Nonethe­

less, the experiment demostrated that HMMs can provide a high recognition 

rate during a realtime conducting performance. 
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Max 1 MSP 1 Jltter 

Figure 5.2: Schematic representation of the gesture analysis, recognition and 
performance system. 



Chapter 6 

Discussion 

6.1 Evaluation of Results 

One of the main drawbacks of the project was the inability of the camera 

input devices to provide information at the sufficient rate and resolution in 

order for the system to perform with a high level of precision. Using 6DOF 

magnetic sensors instead of cameras will resolve the issue in the future, and 

will enable the use of sorne additional features-such as tracking the move­

ment of the conducting baton. Nonetheless, through experiments described 

in the previous chapter it was proven that HMM techniques can be success­

fully used for recognition of both time-beating and expressive gestures. 

6.2 Conclusion 

The purpose of the work was to develop a set of practical tools to be applied 

for future work and to test them to make sure they are appropriate for gesture 

recognition, rather than providing an in-depth study into classification of 

conducting gestures. 
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The main achievement of the work is development of an HMM-based 

procedure that can be applied to analysis and classification of expressive 

conducting gestures. In particular, HMM training and recognition pro cesses 

were applied to analysis of both right hand beat indicator gestures and le ft 

hand expressive articulation gestures. This brings an improvement over ex­

isting systems, since whereas right hand movements had been analyzed with 

HMM and Artificial Neural Net techniques in the past, there has been no pre­

vious research involving high-Ievel recognition and classification techniques 

applied to left hand expressive gestures. 

The designed HMM package, which is available for free distribution online 

(http://www.music.mcgill.caj-pkolesjdownload.html).isintended for use as 

a general tool in Max/MSP environment. It could be applied not only to­

wards positional data classification but also towards any other pro cess that 

involves pattern recognition-such as speech recognition, timbre recognition 

or score following. The resulting set of analysis, HMM-based recognition and 

performance tools will be directed towards future research in development of 

standardized classification of conducting gestures. 

6.3 Future Work 

One of the future goals of the project is to design a gesture recognition pro cess 

that can be implemented in a continuous conducting movement environment 

in combination with the developed gesture analysis and performance sys­

tem. Whereas the issue of temporal segmentation of a continuous gesture 

observation stream can be easily solved for right-hand beat indicating ges­

tures through the use of information extracted by another pro cess (such as 
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tracking positional maxima and minima of the gestures), there is no sim­

ple way of using a similar technique for expressive gestures, since there is 

no clear uniform indication of positional transitions between them. A solu­

tion to this problem lies in the capability of HMM process to automatically 

segment an entire observation stream into isolated gesture states. This tech­

nique involves training HMM models separately with isolated gestures, and 

then chaining the trained models together into a single network of states. 

The Viterbi algorithm can then be used on the entire observation stream, so 

that the temporal segmentation problem is simplified to computing the most 

probable path through the network. 

Upon complet ion of the continuous pro cess of gesture recognition, the 

eventual goal of the work will be to develop a classification library of con­

ductors gestures for computer conducting gesture recognition systems. This 

part of the project will address the need for development of a uniform set of 

conducting gesture definitions in terms of their positional information and 

mappings to the music score. The proposed library will be based on the ex­

isting well-developed grammar of traditional conducting technique, and will 

be introduced as a standardized set of gesture definitions to be used for fu­

ture research in the field of conducting gesture recognition. Positional 3-D 

recording of the library gestures will be done with Vicon 460 Motion Capture 

and Polhemus Liberty systems now available at Mc Gill Input Deviees and 

Music Interaction Laboratory. 



Appendix A 

Hidden Markov Model 

This appendix provides a technical overview of the concept and functionality 

of a Hidden Markov Model 1. Whereas there exist a number of alternative 

methods of calculation of the HMM procedures described in the appendix, the 

formulae presented here were collected from different sources as an optimal 

set of computations for practical implementation of HMM functionality. 

A.l Hidden Markov Model -Definition and 
Overview 

Hidden Markov Model(HMM) is a structure that is used to statistically char­

acterize the behavior of sequences of event observations. HMM is an exten­

sion of a model known as Markov Chains. Whereas Markov Chains deals 

with observation sequences that are fully accessible, HMM works with rep­

resentation of so called "hidden" event which cannot be observed directly. 

1 A detailed overview of general HMM techniques can be found in (Rabiner and Huang 
1986) and (Rabiner 1989). Scaling procedure and other practical issues mentioned in this 
chapter are described in (Deller, Hansen, and Proakis 2000), (Huang, Ariki, and Jack 
1990) and (Lien 1998). 
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By definition, "An HMM is a double stochastic pro cess with an underlying 

stochastic pro cess which is not observable, but can only be observed through 

another set of stochastic pro cess that pro duce the sequence of observed sym­

bols" (Rabiner and Huang 1986). In other words, HMM is applied to an 

observable process which has been generated from another "hidden" pro cess 

that is the main area of interest. The technique used to obtain an observable 

sequence from the hidden sequence is known as vector quantization. 

A.1.1 Introduction to HMM 

The idea behind HMM is that any observable sequence can be represented as 

a sequence of states, with each state corresponding to a grouped portion of 

sequence values and containing its characteristic features in statistical form. 

HMM keeps track of what state is likely to be assigned the initial portion of 

the sequence, of what values are likely to occur in each state, and of what 

state-to-state transitions are likely to take place. 

HMM Parameters 

A Hidden Markov Model can be characterized through the following set of 

parameters: 

N: number of states (51, 52, ... , 5 N) of the model 

M: number of labels (Q1, Q2, ... , Q M) that occur in the observation sequence 

(also referred to as codebook size) 

II: an array of initial state probabilities (size of the array is N): 

(A.1) 
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A: an N x N matrix of state-to-state transitional probabilities: 

(

an 
a21 

A = {aij} = : 

aN1 

(A.2) 

where aij is a probability that a transition from state Si to state Sj will 

take place. 

B: an N x M matrix of state output probabilities: 

b1(M) ) 
b2 (M) 

bN(M) 

(A.3) 

where bi(l) is a probability that an occurrence of label Qzwill take place 

in state Si. 

The HMM model is then referred to as: 

À = (II, A, B) (A.4) 

Observation Parameters 

An observation sequence used as an input array to HMM can be characterized 

by: 

T: number of observations (01, O2 , ... , DT) in the observed sequence 0 

K: number of multiple observation sequences (01, 0 2 , ... , OK) 
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HMM Types 

An HMM model can be of ergodic or left-to-right type. In an ergodic type, 

which is a general case of an HMM, the pro cess is allowed to start and finish 

in any state, and all possible state-to-state transitions are allowed. In a left­

to-right HMM type, the pro cess is bound to st art in the first state and finish 

in the last state, and the only transitions allowed at any given point are those 

of a state transition to itself or of a state transition to the consequent state. 

A.2 Three HMM problems 

There are three main problems associated with application of HMM in se­

quence recognition process: 

Problem 1: given an observation sequence 0 and a Hidden Markov 

Model À, calculate P( 0IÀ) - the probability that the model would pro­

duce this observation sequence. It is also known as an HMM Recogni­

tion problem. 

Problem 2: given an observation sequence 0 and a Hidden Markov 

Model À, calculate the optimal sequence of states (Il, f 2,· .. ,fT) that 

would maximize the likelihood of À producing the observation. It is 

also referred to as HMM Uncovering Problem. 

Problem 3: given an observation sequence 0 (or a set of observation 

sequences (01,02 , ... , OK)) and a Hidden Markov Model À, adjust the 

model parameters II, A, B so that probability of the model P(OIÀ) is 

maximized. This problem is also called HMM Training. 
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A.2.1 Solution to Problem 1 - Forward-Backward AI­
gorithm 

A straightforward approach to the problem would be to go through aU pos­

sible state sequences of length T, calculate probability of each sequence and 

then compute the result as a product of aU of the sequence probabilities. This 

procedure would require 2T * NT calculations - which is beyond computa­

tional capacity of any computer even for small values of states and observa­

tion times. A more efficient method used to find a solution to the problem 

is known as a Forward-Backward algorithm. 

Forward Procedure 

The algorithm uses a forward probability variable Œ that is defined as: 

(A.5) 

i.e. the probability that the observation sequence is in state i at observation 

time t, given the model and the partial observation sequence 0 1 -Dt. The fol­

lowing procedure is used to compute alphas for every state at aU observation 

times: 

1. For the first observation time t = 1, 

2. For aU other observations 1 < t :S T and 1 :S i :S N, 

N 

Œt(i) = ['LŒt-1(i)aji]bi(Ot) 
j=l 

(A.6) 

(A.7) 
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3. Probability of the model P(O[À) is then calculated as: 

N 

P(O[À) = Lar(i) (A.8) 
i=l 

This procedure is based on the assumptions of lst-order HMM that the state 

of a model at any observation time t is dependent only on its state at the 

previous observation time (t - 1). Therefore, each of the alphas is calculated 

only based on information from the current and previous states. Based on 

the ab ove equations, it is clear that computational cost of the procedure is 

now equal to N 2T calculations. 

Backward Procedure 

Another method of calculating a probability of an HMM model is to use a 

backward probability variable (3 which is defined as: 

(A.9) 

i.e. the probability of the partial observation sequence Ot - Or that starts 

in state i at time t, given the model À. A similar iterative procedure is used 

to calculate betas of an states for every observation time but starting from 

the last observation: 

1. For the last observation time t = T, 

(3r(i) = 1, 1 ~ i ~ N 

2. For an other observations 1 ~ t < T and 1 ~ i ~ N, 

N 

(3t(i) = Laijbi(Ot+l)(3t+1(j) 
j=l 

(A.10) 

(A.ll) 
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3. Probability of the model P(OIÀ) is then calculated as: 

N 

P(OIÀ) = L 7ribi(01)f31(i) (A.12) 
i=l 

The complexity of backward probability computation is also equal to N 2T 

calculations since it uses the same sequential pro cess of going through aIl 

states at each observation time as in case of forward procedure. 

A.2.2 Solution to Problem 2 - The Viterbi Algorithm 

In order to compute the optimal sequence of states that would maximize 

the likelihood of an observation sequence 0 being produced by a Hidden 

Markov Model À, a procedure known as the Viterbi algorithm is used. An 

optimal sequence of states Q = {ql, q2, ... , qt} is found by computing optimal 

state probability values 6t (i) for aIl states at each time step t, recording their 

indices as 'l/Jt(i) , and retrieving the optimal state indices qt(i) through a back­

tracking procedure. The maximum probability value at the final time step 

T is equal to the overall model probability-therefore, the Viterbi algorithm 

can be used alternatively to the Forward-Backward procedure to calculate 

the value of P( OIÀ). The Viterbi algorithm can be summarized through the 

following sequence of steps: 

1. Initialization. 

2. Recursion. 

(A.13) 

(A.14) 

(A.15) 
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3. Termination. 

P(o[>.) = max [OT(i)] lS:.iS:.N 

qT = arg max [OT(i)] 
lS:.iS:.N 

4. State sequence backtracking. 
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(A.16) 

(A.17) 

(A.18) 

(A.19) 

A.2.3 Solution to Problem 3 - Baum-Welch Reestima­
tion 

A method known as Baum-Welch reestimation is used to maximize P(O[>') 

of an HMM. It uses probability variables Et(i,j), 'Yi,j and 'Yt(i) to reestimate 

7r, A, B parameters of the model. 

The first variable Et( i, j) is defined as the probability that HMM process 

is in state Si at time t and in state Sj at time (t + 1), given the sequence 

01, ... ,Ot. It is calculated as: 

(
. ') _ P(qt = Si, qt+l = Sj, 0 1, ... , OT) _ (Xt(i)aij bj (Ot+df3t+l(j) 

Et ~,J - P(o[>.) - P(O[>') 
(A.20) 

Another variable used by Baum-Welch reestimation procedure is 'Yt(i). It is 

defined as the sum of probabilities of transitions from state Si to Sj for an 

times t of observation sequence 01, ... ,Ot. 

(A.21) 
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Probability variable 'Yt(i) is defined as the probability that current observa­

tion label at time t is assigned to state Si of the model. 

. ~ .. Œt (i){3t (i) 
'Yt(~) = f=iEt(~,J) = P(O[À) (A.22) 

Using definitions of Et(i, j), 'Yi,j and 'Yt(i) , we can now describe Baum-

Welch reestimation formulae for 7r, A, B: 

1. Initial probability: 

where 1 :s: 'i :s: N. 

2. Transition probability: 

- 'Yij 
aij = N 

2:j =l 'Yij 

2:'[':/ Œt(i)aijbj (Ot+1){3t+1 (j) 
2:'[=-l Œt(i){3t(i) 

where 1 :s: i :s: N and 1 :s: j :s: N. 

3. Output probability: 

where 1 :s: i :s: N and 1 :s: l :s: M. 

(A.23) 

(A.24) 

The formulae are simplified so that intermidiate variables Et(i,j), 'Yi,j and 

'Yt(i) do not have to be calculated - nonetheless, they were included in the 
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presentation to support theoretical explanation of the reestimation proce­

dure. 

Baum-Welch training procedure is as follows: 

Step 1: create an initial HMM model >'0. For an ergodic model, random 

values are assigned to all of the model variables. For a left-to-right 

model, equal distribution values are assigned to all allowed initial and 

transition parameters as well as to all output parameters. 

Step 2: Using formulae A.23, A.24 and A.25, create a new model >'1 

from >'0. 

Step 3: If P(OI>'d > P(OI>'o) or/and if the reestimation pro cess has 

not yet run the specified number of times, continue. Otherwise, stop. 

A.3 Additional Issues Related to HMM Im­
plementation 

This section describes the practical issues that were encountered during the 

design stage of the HMM object. Computational solutions to the issues are 

provided. 

A.3.1 Scaling 

Forward-Backward algorithm uses a recursive procedure to calculate values 

of Œt(i) and (3t(i) for each observation time t. Because of the recursive nature 

of the process, those values will be calculated as a result of many multiplica­

tions including transition and output probability probabilities. Since those 
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probabilities aij and bil will always be in the range 0 :S (aij, bil) :S 1, the 

values of Ot(i) and f3t(i) will exponentially get doser and doser to 0 as the 

pro cess is going through each observation time t. Therefore, for long obser­

vation sequences there is a danger that sorne of the Ot(i) and f3t(i) values 

will be beyond computational precision range. A solution to this problem in­

volves scaling aIl of the forward and backward probability values by a scaling 

coefficient which will keep them in the desired range and will cancel out at 

the end of the computation of reestimation parameters without interfering 

with final results. 

Scaled Forward Probabilities 

Auxiliary variables Œt(i) and Œt(i) have to be defined for the forward scaling 

process: 

1. For the first observation time t = 1, 

2. For aIl other observations 1 < t :S T and 1 :S i :S N, 

where 

N 

Œt(i) = L>~t-l(j)ajibi(Ot) 
j=l 

and scaling coefficient Ct is defined as 

1 
Ct = ",N - (') L.i=10t 2 

(A.26) 

(A.27) 

(A.28) 

(A.29) 
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Scaled Backward Probabilities 

In a similar way, auxiliary variables ffit(i) and ffit(i) are used for backward 

probability calculations: 

1. For the last observation time t = T, 

2. For aIl other observations 1 :S t < T and 1 :S i :S N, 

N 

where 

Îlt( i) = L aijbj ( Ot+dffit+l (j) 
j=l 

(A.30) 

(A.31) 

(A.32) 

Scaling coefficients Ct are not recalculated during the backward procedure 

- instead, Ct coeffeicients from forward algorithm computations are used to 

adjust backward probability values. 

Probability Calculation 

The probability of the model P(OI..\) can now be calculated using scaling 

coefficients Ct: 
N 1 

P(OI..\) = LLtT(i) = ---'T"'-----
i=l ITt=l Ct 

(A.33) 

However, in practice there will be a possibilty that the resulting probability 

value will also be smaller than computational precision range. A solution to 

this is to calculate log P( 01..\) instead: 

T T N 

log(P(OI..\)) = - Llog Ct = - Llog Lat(i) (A.34) 
t=l t=l i=l 

which pro duces a negative value in an acceptable range. 
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Scaled Reestimation Parameters 

In Baum-Welch reestimation formulae, forward-backward probabilities at(i) 

and f3t(i) are replaced by scaled variables ât(i) and ~t(i): 

1. Scaled initial probability 

_ â1(i)~1(i) A (.) A (.) 

'Tri = N A (.) = al 2 f31 2 CT 
2:i=l aT 2 

(A.35) 

2. Scaled transition probability 

_ 2:[=-11 â t ( i)aijbj (Ot+1)~t+l (j)Ct+1 
aij = T-1 A • A • 

2:t=l at( 1, )f3t( 2) 
(A.36) 

3. Scaled output probability 

l).(l) = 2:[=1 {tlOt = Vt}Aât(i)~t(i) 
t 2:[=1 ât(i)f3t(i) 

(A.37) 

Since scaling coefficients Ct were used during calculation of all of the auxiliary 

variables used in the formulae, the results of the reestimation calculations are 

not affected, as the scaling coefficients get cancelled out. 

Scaled Viterbi Algorithm 

In order to simplify the computation by replacing multiplications by addi­

tions, and to avoid number precision issues that were previously described 

for Forward-Backward and reestimation algorithms, logs of values are used 

in the case of Viterbi algorithm as weIl. The scaled Viterbi equations are: 

1. Initialization. 

81(i) = log(81(i)) = log('Tri) + log(bi(Ol)), 1 ~ i ~ N 

,(/;1 (i) = 0, 1 ~ i ~ N 

(A.38) 

(A.39) 
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2. Recursion 

3. Termination. 

log(P(O[À)) = max [JT(i)] 
l~i~N 

iiT = arg max [8T (i)] 
l~i~N 

4. State sequence backtracking. 

iit = ,(ï;t+l(iit+l), t = T - 1, T - 2, ... ,1. 

A.3.2 Multiple Observation Sequences 

77 

(A.40) 

(A.41) 

(A.42) 

(A.43) 

(A.44) 

In the case where a model is being trained with K observation sequences 

instead of a single sequence, the reestimation procedure can be used over all 

of the sequences at the same time. 

HMM Probability 

Probability of the model can be found as a product of individual probabilities 

calculated for all of the observation sequences: 

K 

P(O[À) = II p(Ok[À) (A.45) 
k=l 

Reestimation Parameters 

Initial probability value is calculated by weighing all of the 7i'f equally: 

(A.46) 
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The weight of transition probabilities are dependant on the length of each 

observation sequence Ok: 

K (k) ~K I ~Tk-I (k) (') b (O(k) )j3(k) ( ') 
_ Lk=1 'Yij ~k=l P(O(k11>-) ~t=l Œt Z aij j tH Hl J 
aij = ~K ~N (k) = ~K l ~Tk-l (k)(')j3(k)(,) 

~k=l ~j=1 'Yij ~k=l P(O(k11>-) ~t=l Œt Z t Z 

(A.47) 

which is also the case for output probabilities: 

Scaled Reestimation Parameters 

As in the case of a single observation sequence, the reestimation parame­

ters for multiple observation sequences also have to be scaled, The scaled 

reestimation formulae are: 

1. 

(A.49) 

2, 
~K ~Tk-l A (k)( ') b (o(k) )j3A(k) (') (k) 

_ ~k=l ~t=l Œt Z aij j Hl tH J CHI 
aij = --":":'-=--~'--"--K-~-T-'-k _-'-I-=A'-7( k~) -( ,-'-') j3A'--"( k:-'-) (-'-, ):.........;...-'---'-

~k=l ~t=l Œt Z t Z 

(A,50) 

3, 
~K ~Tk {tiO }A(k)(')j3A(k)(,) bi(l) = ~k=l ~t=l t = Vt Œt Z t Z 

~K ~Tk A (k)( ')j3A(k) ( ') 
~k=l ~t=l Œt Z t Z 

(A,51) 
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