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ABSTRACT

In this paper we present an approach for the realtime in-
direct acquisition of specific fingerings that produce har-
monic notes on the flute. We analyse both temporal and
spectral characteristics of the attack of harmonic notes
which are being produced by specific control gestures in-
volving fingering and potentially overblowing. We then
show that it is possible to acquire this effect through signal
analysis using a principal component analysis on the sub-
harmonics of harmonic notes. An 8-fold cross-validation
showed this approach to be successful for a single per-
former playing isolated notes.

1. INTRODUCTION

In order to create interactive music systems, it is necessary
to acquire control information from a performer’s actions
such as fingering for the flute. One possibility is the use
of augmented instruments constructed by attaching sen-
sors to traditional instruments. For the flute, four exam-
ples can be found in the literature: the Hyper-Flute [1],
McGill air jet sensor [2], the LMA Flute [3] and the MIDI
Flute [4]. Table 1, adapted from [5], compares these sys-
tems in terms of the variables they extract and, as is the
concern of this paper, their ability to detect specific har-
monic notes. This particular technique allows a flutist to
play the same note using different fingerings by changing
the properties of the air jet [6]. For instance, a D6 1 can be
obtained using D6 fingering as well as D5 and D4 finger-
ings by overblowing. The score notation for these three
configurations is given in Figure 1.
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Figure 1: Score for the three configurations described in Tab. 1.

Naming Type Naming
1st condition 2nd condition 3rd condition

Technic D6 with D4 fingering D6 with D5 fingering D6 with normal fingering
Control overblow overbow normal
Fingering D4 D5 D6
Frequency 4 fD4 ≈ fD6 2 fD5 ≈ fD6 fD6
Signal 4th harmonic / D4 2nd harmonic / D5 fundamental frequency / D6
Music 3rd harmonic / D4 1st harmonic / D5 D6

Table 1: Naming for the 3 fingering conditions (see Fig. 1) used to produce timbre modulations of D6
on the transverse flute, corresponding to two fingerings of lower D harmonics (conditions 1 and 2) and
normal D6 fingering (condition 3).

1

Figure 1. Score for three fingering configurations for D6.
A diamond denotes the required fingering and a note with
a circle above denotes the required pitch.

1 We choose the convention where A4 corresponds to 440 Hz.

Device Variables Fing. Air jet Ob.
MIDI flute [4] all key pos. (on/ off) all — —
LMA flute [3] all key pos. (cont.),

sound amplitude
all — —

Hyper-flute [1] 2 key pos. (cont.),
inclination,
flute rotation,
distance to computer

2 — —

McGill Air-Jet
Sensor [2]

total air pressure
around mouthpiece,
flute weight around
thumb

— pressure —

Table 1. Comparison of various augmented flutes accord-
ing to their purpose, the variables they extract, the possi-
bility to detect fingerings, air jet and overblowing.

None of the systems in Table 1 can detect this perfor-
mance parameter even though it is of common use for
flutists playing contemporary music, jazz and other im-
provised music. One could imagine combining McGill’s
air jet pressure sensor [2] with the LMA Flute [3] to de-
tect both fingering and overblowing. A possible drawback
of this solution, however, would be the intrusive nature of
the pressure sensor.

Viewpoint Condition 1 Condition 2 Condition 3
Fingering D6 D5 D4
Score 2 D6 1st harmonic 3rd harmonic
Control normal overblow overblow

F0 fD6 2 fD5 ≈ fD6 4 fD4 ≈ fD6

Table 2. Naming convention for the fingering configura-
tions in Figure 1.

Herein lies the interest of an approach relying mainly
on an analysis of the sound. This type of approach, known
as indirect acquisition [7], has many benefits, the main
one being that no alterations to the instrument are required,
apart from the need of a microphone. On the other hand,
this method requires complex algorithms which can be
computationally intensive. We will now outline our metho-
dology and results in the preliminary study of indirect ac-

2 Convention used by musicians.



quisition of fingerings of harmonic notes.

2. METHODOLOGY

We first present the data set we collected for indirect ac-
quisition of fingerings of harmonic notes on the flute, and
then discuss the choice of appropriate sound descriptors
for future realtime analysis.

2.1. Data collection

We recorded 20 samples of each fingering (normal plus
one or more harmonic notes) listed in Table 3. Depending
on the point of view, the three configurations illustrated
in Figure 1 can be expressed with a different lexicon (cf.
Table 2). In this paper, we refer to configurations 1, 2 and
3 as D6 with normal fingering, D6 with D5 fingering (har-
monic series of the second harmonic of D5 plus some sub-
harmonics) and D6 with D4 fingering (harmonic series of
the fourth harmonic of D4 plus some sub-harmonics). All
of our recordings come from a single performer and were
made using an EarthWorks SR 77 microphone (positioned
approximately 10 cm above the flute mouthpiece) and an
Apogee Rosetta 800 sound card (16-bit, 44.1kHz) on a
Mac G5.

Grp Note Fingerings Grp Note Fing.
1 D#5 D#5, D#4 5 F6 F6, F5
2 D6 D6, D5, D4 6 F#6 F#6, F#5
3 D#6 D#6, D#5, D#4 7 G6 G6, G5
4 E6 E6, E5 8 G#6 G#6, G#5

Table 3. Experimental data set: note and fingerings used
to play this note for each of the 8 groups.

2.2. Strategy for analysing fingerings of harmonic notes

When a flutist plays a harmonic note using a given fin-
gering and overblowing, several changes appear in the
sound. For example, the fundamental frequency is not
exactly the same as with the normal fingering (cf. Table
2). Also, differences arise in the spectral envelope of both
the harmonic and residual components of the sound, as
well as in the temporal and spectral structure of the at-
tack. We did not use the slight difference in fundamen-
tal frequency since experienced flutists can correct it 3 by
adjusting the air flow and tilting the flute. Additionally,
detecting changes in the spectral envelope of the harmo-
nics and residual noise requires non-realtime analysis, so
we avoided this approach. Hence, only the temporal and
spectral structures of the attack seem to allow for reliable
realtime detection of fingerings of harmonic notes. We
now present the analysis of the attack we consider in these
two domains.

3 “[T]he player must be sensitive to the subtleties of each fingering
and must compensate appropriately for any inherent defects in intona-
tion, dynamics, or tone quality”, [8] p. 143.

3. TEMPORAL ANALYSIS OF THE ATTACK

3.1. Observations

We chose to examine the evolution of the short-time energy
of the signal during the attack via the RMS profile. To ob-
tain the best results, we assumed that we knew the pitch
of the sound to perform a pitch-synchronous analysis. In
figure 2, we display the average and standard deviation of
the RMS profiles computed for the three fingering config-
urations of D6 presented in figure 1.

Figure 2. Mean and standard deviation of the RMS profile
for three different fingerings of D6.

We noticed that the RMS profile increased faster for
normal fingerings than for alternate fingerings. Also, we
found a faster rise of the RMS for condition 2 (2nd har-
monic note) than for condition 3 (4th harmonic note).

3.2. Results

In order to quantify the previous observations, we col-
lected the inflexion point of the attack profiles for all the
sounds in our data set. Figure 3 represents the inflexion
points corresponding to three different fingerings for D6,
together with the mean and standard deviation of the in-
flexion point for each fingering. The x-axis represents the
time at which the inflexion is reached with respect to the
onset. The y-axis represents the value of the slope at the
inflexion point, the maximum slope of the RMS profile. It
appears that, on average, the RMS profiles of the differ-
ent fingerings tend to cluster in different regions of this 2-
dimensional representation. Nevertheless, the distinction
between those regions is not always very clear. In Fig. 4,
for instance, we observe some overlap between the differ-
ent types of fingerings for F6. Therefore it appears that
although the RMS profile may not be perfectly suited for
the identification of overblowing, it provides information
about the attack. This information can be used in combi-
nation with spectral analysis for other applications such as
attack type detection.

4. SPECTRAL ANALYSIS OF THE ATTACK

Since harmonic notes are produced on the flute by over-
blowing a given fingering of a lower note, we carried out
a spectral analysis on the attack portion of our recordings



Figure 3. Slope vs. time of the inflexion point for D6.

Figure 4. Slope vs. time at the inflexion point for F6.

(using IRCAM’s Audiosculpt [9]). Figure 5 shows three
sonograms of the note D6 played with alternate fingerings.
It is quite obvious that, as the fingering changes from D6
to D5 to D4, energy still emerges at sub-harmonics of the
D6 fundamental. The presence of sub-harmonics is es-
pecially pronounced during the attack of each note, and
indicates that a portion of the air column is still oscillating
at a lower frequency when harmonic notes are played.
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Figure 5. From left to right: sonograms for D6, 2nd har-
monic of D5, 4th harmonic of D4.

We decided to extract the power in these sub-harmonics
in order to determine their suitability for classification of
overblowing on the flute. To simplify the feature extrac-
tion we assumed a priori knowledge of the pitch and onset
time of each note. For a monophonic instrument like the
flute, these parameters are relatively easy to extract. We
performed an FFT on each flute recording using a 2048-

point Hanning window and 1024-point hop size. For each
of the first six sub-harmonics, the spectrum power was
averaged on frequency intervals centered around the sub-
harmonic frequency, for further analysis. Figure 6 shows
a block diagram of the processing chain.

Figure 6. Block diagram for overblowing detection.

4.1. Principle Component Analysis

It is clear that the spectrum changes for each of the dif-
ferent fingerings, however, the mechanism for this change
is not straightforward. For example, it is difficult to iden-
tify how the spectral envelope of sub-harmonics changes
from one fingering to another. For this reason, we decided
to experiment with principle component analysis to iso-
late the elements in our feature vector responsible for the
greatest variance.

The principle component analysis (PCA) technique de-
composes a data set onto the eigenvectors 4 of its covari-
ance matrix [10]. A reduction in dimensionality can often
be achieved using PCA since the first few eigenvectors
(principle components) usually account for a high per-
centage of variance in the analysed data (in which case
non-principle components may be discarded with mini-
mal information loss). PCA can aid in the interpretation of
data because it concentrates information previously spread
across several interrelated variables; it can also be used
as a classifier since separating the dimensions of a data
set according to variance will often cause clustering in the
eigenspace. In this paper we use PCA to classify harmonic
notes fingerings on the transverse flute, similarly to how
Egozy examined embouchure pressure and attack types on
the clarinet [11].

4.2. PCA Results

We performed a separate PCA on each configuration in
our data set (Table 3) and, to verify our results, we per-
formed an 8-fold cross-validation. Cross-validation is the
most widely used method for obtaining unbiased estimates
of model performance in machine learning applications
[12]. To perform the cross-validation we partitioned our
data set into 8 subsets, each with 14 training recordings
and 2 test recordings.

Figures 7 and 8 show typical results of the PCA. In
each figure the gray shapes represent training data and the
black shapes represent testing data. The first two princi-
ple components were found to account for over 90% of the

4 These eigenvectors define a linear transformation between the orig-
inal feature space and an eigenspace.



Figure 7. First two principle components for 3 configs of
D6 (gray: training data; black: test data).

Figure 8. First two principle components for 2 configs of
E6 (gray: training data; black: test data).

variance in each group. Referring back to the figures, no-
tice that each configuration forms a distinct cluster in the
eigenspace. We used a least-squares distance measure in
order to classify the fingerings/overblowing used on each
test recording. In other words, the squared distance be-
tween each test sample and the center of gravity of each
training cluster was measured, and used to classify the test
recordings. We found that all of the test recordings of this
single performer were correctly classified using this met-
ric. Realtime application of this classification scheme is
possible, the training (PCA modeling) can be done offline.

5. CONCLUSION AND FUTURE WORK

This work has examined techniques for realtime indirect
acquisition of fingerings of harmonic notes on the flute.
Although the RMS profile was not sufficient for classi-
fication, we believe this feature could be very useful for
other analyses such as attack type classification. On the
other hand, we have demonstrated that it is possible to
identify different flute fingerings/overblowing by apply-
ing PCA to the energy of the sub-harmonics. The results
for a single performer were very robust, giving 100% cor-
rect classification on eight different notes, using an 8-fold
cross-validation. A natural next step would be to extend
this study using multiple performers and different flutes. It
remains to be seen whether a performer invariant system
would be possible, or whether a PCA calibration would
be required on a performer by performer basis. We would
also like to test the success of this technique in more real-
istic musical conditions, for example, on a series of artic-
ulated notes.
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