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ABSTRACT
The choice of mapping strategies to effectively map con-
troller variables to sound synthesis algorithms is examined.
Specifically, we look at continuous mappings that have a
geometric representation. Drawing from underlying mathe-
matical theory, this paper presents a way to compare map-
ping strategies, with the goal of achieving an appropriate
match between mapping and musical performance context.
This method of comparison is applied to existing techniques,
while a suggestion is offered on how to integrate and extend
this work through a new implementation.
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1. INTRODUCTION
There are currently a large number of physical controllers

and hardware/software synthesis environments available for
use in computer music1. As a whole, the area of gestural
control has grown rapidly in the past several years. Only
more recently2, however, has attention been given to the
process by which data from an input device is associated
with synthesis parameters for real-time control. We refer to
this process as Mapping.

1.1 Musical Use of Mappings
In considering a mapping strategy for a real-time perfor-

mance system, a basis for comparison must be established
to aid in the selection process. As explicit mappings are
themselves functional expressions, their appropriateness for
a particular musical use can partially be determined by the
properties that these functions possess. In order to do this,
one must first consider what a desirable property of a map-
ping may be in a musical context. These properties are
determined by the desired perceptual effect in both gesture
and sonic result, combined with the choice of controller.

In general there are certain properties which find impor-
tance in many musical situations. Perhaps the most obvious
is continuity. It may also be essential that a rate of change
of a gesture produce some result in a sound space, and so
differentiability3 may be desirable. Taking this further, we
may require that this rate of change itself be continuous, or

1The reader is directed to [14] for examples of existing con-
trollers which have found musical use.
2See [7] for a thorough discussion of recent work.
3For the essential mathematical definitions

perhaps greater smoothness within a gesture is required so
that we may need continuous higher derivatives to exist. In
terms of flexibility, we may require ease of editing for moving
between controllers or synthesis algorithms. Depending on
one’s resources, the computational complexity of a mapping
scheme may also play a large role.

Regardless of the performance situation, it is important to
remember that we need to discretize any data that we wish
to store on a computer. This implies that any mapping
which we implement will need to perform interpolation or
approximation. The necessity of exactness via interpolation
depends on several things, including quantization, resolution
of transducers and perceptual discrimination of gesture and
resultant sound. As we will see, there is a tradeoff between
exactness, smoothness and computability of a mapping.

1.2 Mathematical Formalization
Mathematically speaking, a mapping f : A → B is a func-

tion between two sets such that for every a ∈ A, there exists
a unique element f(a) ∈ B. Notice that this definition al-
lows for a mapping in which several elements a1, . . . , an ∈ A
correspond to the same element b ∈ B (that is, f(a1) =
· · · = f(an) = b), or for a one-to-one relationship in which
there exists a unique element in B for each member of A. In
order for f to be well defined there cannot exist multiple el-
ements b1, . . . , bn ∈ B such that f(a) = b1 = · · · = bn. How-
ever, the notion of a ”one-to-many” mapping makes sense
if we consider a function g which maps across dimensions
of a multi-dimensional range. More specifically, a mapping
g : X → Y is one-to-many if there exists

(x1, x2, . . . , xn), (x′1, x2, . . . , xn) ∈ X

such that

g((x1, x2, . . . , xn)) = (y1, y2, . . . , ym)

g((x′1, x2, . . . , xn)) = (y′1, y
′
2, . . . , y

′
m)

with yi #= y′i for 2 or more variables yi.
In other words, varying only a single parameter in X af-
fects change in more than one dimension of Y .

In a musical performance context, we may consider a set
of controller parameters X and synthesis parameters Y to be
subsets of the vector spaces Rn and Rm respectively, which
allows for a geometric representation. The formal expression
of this then becomes:

X = {(x1, . . . , xn)|xi ∈ Pi ⊂ R, i = 1, . . . , n}
needed for this article the reader is directed to
http://www.music.mcgill.ca/musictech/spcl/mapping.html



where each i corresponds to a different parameter and Pi

is the subset of R that contains the possible values of pa-
rameter i. With this representation, each element of X is an
n-dimensional vector and each coordinate represents a single
control parameter. We assume from this point forward that
X ⊂ Rn is our control parameter space and Y ⊂ Rm is our
space of sound synthesis parameters.

We can find an analogy to this in the musical use of map-
ping in [6], in which the authors define 3 subcategories4:

•one-to-one5: one input parameter is mapped to one syn-
thesis parameter

•one-to-many: one input parameter is mapped to several
synthesis parameters

•many-to-one: many input parameters are mapped to a
single synthesis parameter.

The approach that we take defines X and Y to be sub-
spaces of a (potentially) high-dimensional Euclidean space.
This allows for a geometric representation that can prove
beneficial when thinking about the proper choice of map-
ping, as the geometric properties that a mapping possesses
can give insights into its ability to transition between gestu-
ral and/or sonic dimensions. As we consider here mappings
of a continuous surface, we can assume that any reference
to controllers refers to those that produce continuous vari-
ables. Another presupposition to this discussion is that our
mappings are explicit. That is, mappings with an analytic
expression that is known to the designer. 6

2. MAPPING STRATEGIES

2.1 Some Existing Mappings
Several works have considered the notion of multiple lay-

ers of mapping, specifically [1], [10] and [15]. In [15] the
authors consider an ”abstract layer” Z of d-dimensions that
exists between controller space X and synthesis space Y .
The first mapping is described as an adapter between X
and the abstract parameters. The points which are known
in sound space are stored in a d-dimensional lattice. The
second mapping, between the abstract layer and Y , is a mul-
tilinear interpolation based on the 2d points in the hypercell
that contain the input point. This method is continuous and
is differentiable, but does not have a continuous derivative
(this being discontinous at the join between hypercells). The
computation for this method increases exponentially with
the dimension of the space within which it is embedded, in
this case Z, and in particular is O(d2d).

In [2] a mapping f : Rn → Rm is defined which also
interpolates points spaced in a grid. As with the last, the
known control points of this method need to conform to a
shape which is topologically equivalent to an n-dimensional
lattice. These control points are associated with points in
synthesis space Y . This gives us an exact, pointwise map-
ping between some collection of points in controller space
and some corresponding points in synthesis space - there is

4A similar categorization of mapping types was also made
in [12] using different language (one-to-one, convergent, di-
vergent).
5There is a general consensus that the strict use of one-to-
one mappings in an instrument design leads to a lack of
expressive potential. See [6] for a discussion of this.
6This is in contrast to implicit mappings, which rely on
internal adaption of a system. See [6] for further discussion
on this distinction.

no intermediate layer as in the previous example. Geometri-
cally speaking, this amounts to our n-dimensional lattice be-
ing embedded in Rm. To interpolate to other points within
the grid, a scheme is developed which first partitions each
hypercell into simplices. When a point is input into the lat-
tice (when the controller outputs a parameter stream), the
algorithm determines which subdivision the point lies in. If
the point p does not lie at a vertex of the lattice (a known
data point), the vertices {v0, . . . , vn} of the simplex which
contains p determine the point as follows:

p = v0 +
nX

i=1

αivi,
nX

i=1

αi = 1, αi ∈ R ∀i

In other words the point p is expressed in terms of barycen-
tric coordinates with respect to its containing simplex. This
scheme is piecewise linear, and it requires that control points
are spaced relative to some grid. Therefore, in terms of space
requirements this technique is the same as the previous, with
a storage requirement determined by the 2n vertices of a
hypercell multiplied by the number of such cells needed to
cover a space. However, this scheme differs from multilinear
interpolation in that it reduces the number of necessary op-
erations7 from O(n2n) to O(mn). Further, this method is
non-differentiable at the edges between subdivisions8. That
is, there are sharp creases at the join between simplices.
This difference in the smoothness of these two mappings is
clear when we consider that the representations of the two
are fundamentally different - the simplex based scheme is
comprised of ”flat” sections, while multilinear interpolation
has a curved contour, which in fact is hyperbolic.

Another mapping technique that utilizes simplex based
interpolation is presented in [5]. This method, referred to
as ”simplicial interpolation” extends the results from [2] in
several ways. As with this preceding work, it is based on a
pointwise mapping between X ⊂ Rn and Y ⊂ Rm. The dif-
ference between the two is that this approach allows the col-
lection of known points to be scattered. The author achieves
this by creating a triangulation of the points in Rn rather
than fitting them to a grid. In particular, the method used
to do this is the Delaunay triangulation, which has been
widely used for spatial interpolation.

Now, this triangulation in Rn induces a similar one in
Rm, giving us a mesh embedded in the higher-dimensional
space in analogy to the embedded lattice in [2]. As in the
previous method, the point’s barycentric coordinates are de-
termined, which interpolates the surface defined by the tri-
angular mesh in X. This likewise interpolates the surface in-
duced in Y . Depicted9 in figure 1 is a triangulation of a two-
dimensional controller space, which induces an embedding of
”crinkled” two-dimensional triangles in a three-dimensional
sound synthesis space. It is one-to-one in regards to map-
ping of simplices, but notice that it is not itself a one-to-one
mapping. Rather, it is potentially a many-to-many map-
ping, depending on the orientation of each simplex in space.
Further, it allows for scattered data points, can be edited

7It is claimed in [5] that the actual time to compute is O(n3+
mn), the same as for the Simplicial Interpolation method.
8It is suggested in [3] that this be dealt with by introduc-
ing B-spline blending functions. See [4] for more on this
technique.
9Figure 1 consists of screen shots of C++ implementation of
simplicial interpolation by Camille Goudeseune, with mod-
ification by Doug Van Nort.



property Multilinear([15]) Simplex Scheme 1([2]) Simplex Scheme 2([5]) RST([8])
continuous yes yes yes yes
local diff yes yes yes yes
global diff yes no no yes

Ck k = 0 k=0 k=0 variable
grid vs. scattered grid grid scattered scattered

adjustable smoothing no no no yes
complexity rank(1 = fastest) 3 1 2 4

Table 1: Mapping Strategies and Certain Mathematical Properties

locally, and the number of points is not constrained by the
structure of a grid, making this technique more flexible than
[2] in general.

Figure 1: Example of Mapping from [5]. Left: Con-
troller Space in 2D Right: Synthesis Space in 3D

There are many similarities between [2] and [5]. Both
are C0, piecewise linear and are non-differentiable at the
edges between simplices. Thus, the former technique may
be appropriate for data points which lie in a grid. How-
ever, the Delaunay triangulation has several properties that
make it a desireable choice, including regularity of angles
(less singularly sharp points) and the ability to give a best
approximation of certain smoother functions (see [11] for
more on this). Thus, for sufficiently large number of points
this approach may give an acceptable approximation of a
smooth surface while keeping computational load relatively
light. Naturally, there is a tradeoff in this case with less
stored values corresponding to a rougher approximation of
differentiability.

2.2 Combinations and Extensions
The aforementioned mappings, all of which are continu-

ous and explicitly defined, have different attributes which
make them appropriate for different musical contexts. We
have seen that each one has qualities which make it an ap-
propriate choice for certain musical situations, but that a
tradeoff likely exists. To this end, we propose the use of a
mapping strategy which combines several of the qualities of
those from the previous section, making it a potentially pow-
erful method. The technique, known as Regularized Spline
with Tension (RST), is presented in theory and in appli-
cation in [8] and [9], respectively. This is a radial basis
function approach that computes coefficients based on a ma-
trix of linearly indepedent equations of stored data points.
For the purpose of real-time control, these coefficients are
pre-computed. As with other spline-based approaches, un-
wanted overshoots can occur due to fluctuations of data

points and sparse data sets. The authors of [8] alleviate
this problem by a modification of the standard method to
include free parameters that adjust smoothness and tension,
essentially tuning the effect of higher derivatives. The vary-
ing of these parameters allows the mapping to move between
rigid and flexible models, while varying the amount of ap-
proximation.

Not only is this technique continuous and smooth, but it
may be constructed so that it is C∞, or in other words we
can make it as smooth as is necessary. The ability to tune
the mapping to relative levels of approximation is beneficial
when working with different data sets possessing varying
amounts of noise.

This technique encompasses many of the desirable prop-
erties of the previous results, as can be seen in table 1. With
adjustable smoothness and tension, it also has potential for
great flexibility. Quite naturally, this comes at a cost in
terms of computational complexity. However, RST has been
implemented efficiently for two and three dimensions as part
of GRASS GIS, or Geographic Resources Analysis Support
System - an open source geographic information system. 10

Further, we have implemented a real-time version of RST in
Max/Msp.

2.3 Dimensionality
Control of sound synthesis often requires a mapping to go

from lower to higher-dimensional space. The simplex-based
method of [5] is designed to reduce the dimensionality of
points in synthesis space Y to that of controller space X
by directly associating them in a pointwise manner. This is
achieved by using a generative technique (Sammon’s map-
ping or a genetic algorithm) to preserve the clustering prop-
erties of the points in synthesis space and map them into
the lower-dimensional space. However, there still needs to
be some decision as to why certain points map onto oth-
ers in the lower-dimensional surface, one that takes into ac-
count the relevance of gesture and resulting sound. The
author also suggests that this be done by the user in an in-
tuitive manner, associating certain controller space points
with certain points in synthesis space, in a sense creating a
”user-defined perceptual subspace”. Dimensionality reduc-
tion may be introduced in conjunction with the other map-
pings as well, using such techniques as multi-dimensional
scaling (MDS), principle component analysis (PCA) and
self-organizing maps (SOM). In doing this the user must
consider the sort of subspace that needs to be constructed,
and whether it is perceptually driven or data driven. An
example of a framework that generates a controllable sub-

10Work in this field explicitly deals with the mapping of geo-
graphic data for visual display, and so spatial interpolation
plays a major role.



space based on input data and interpolates points within
this space can be found in [13]. This work presents a perfor-
mance system in which continuous physical controller data
drives the formation of an input-output space via cluster-
weighted modeling. However, it does not focus specifically
on the continuous mapping strategies involved.

The interest here is precisely on these mappings. Geo-
metrically speaking, our controller space X is bound by the
dimensionality of the input device - the high-dimensional in-
terpolator of [5] embedded in Rm still consists of piecewise
linear n-dimensional surfaces when mapping a device of n
dimensions. Similarly, methods such as multilinear or reg-
ularized spline with tension generate an n-dimensional sur-
face11, which can then be embedded in higher-dimensional
space.

3. EXAMPLE
In order to focus on the effect of the mapping, a simple

low-dimensional example was preferred to a more complex
performance system. The goal is to illustrate the importance
of the proper choice of mapping given the perceptual nature
of the musical task at hand, while still providing an example
that is intuitive and relevant in a musical context. In this
example, we used the x-y position of a wacom tablet to
control a simple source-filter system in which an harmonic
signal of fundamental frequency f0 is filtered by a second
order IIR filter of the form

y[n] = x[n] + b1y[n− 1] + b2y[n− 2]

This R2 → R3 mapping is achieved by embedding the wa-
com control surface in the synthesis space, so that x-y mo-
tion controls the three variables f0, b1, b2. More specifically,
controlling the filter bandwidth and center frequency allows
the b1 and b2 coefficients to be controlled indirectly by the
relationship

b1 = 2e−πBw/fscos(2πfc), b2 = −e−2πBw/fs

where Bw, fs, and fc represent bandwidth, sampling rate
and center frequency. While the filter coefficients are the
target space, the embedding is in the more perceptually
relevant space of spectral bandwidth and center frequency.
Thus, the geometry of the mapping - its orientation and em-
bedding in a higher-dimensional space - allows for a control
similar to that of multiple layers of mapping, as can be seen
in the mapping flow diagram of figure 2.

The control surface is 2-dimensional with the x position of
the tablet controlling filter bandwidth in the range of 1-100
Hertz and the y position controlling the fundamental of the
harmonic source in the range 500-2000 Hertz. It is embedded
such that the x-y position across the surface is mapped to
center frequency of the filter, which ranges from 2 to 8 times
the frequency of the given fundamental. Thus, we set up an
example musical situation in which slow, smooth gestures
can be used to ”explore” the sonic space in order to scan
the harmonic peaks that occur at the point of resonance fc.
Changing only the mapping allows us to hear the effect that
it has on the feel of the interface12.

11Assuming the mapping is directly from controller space in
Rn, and there is no intermediate layer of another dimension
as in [15].

12A study in which the authors tested the effect that different
mappings have on expressivity was reported in [12].

Given the sensitivity of human perception in the chosen
frequency range and the sort of slow ”exploratory” gesture
we were after, we chose to use the two methods that are
globally differentiable - namely multilinear interpolation (in
this case bilinear) and RST. Recall that the former is a grid-
based technique, and so for purposes of comparison we used
the same gridded points for both.

with the other mappings as well, using such techniques as
multidimensional scaling (MDS), principle component anal-
ysis (PCA) and self-organizing maps (SOM). In doing this
the user must consider the sort of subspace that needs to
be constructed, and whether it is perceptually driven or
data driven. An example of a framework that generates a
controllable subspace based on input data and interpolates
points within this space can be found in [12]. This work
presents a performance system in which continuous physical
controller data drives the formation of an input-output space
via cluster-weighted modeling. However, it does not focus
specifically on the continuous mapping strategies involved.

The interest here is precisely on these mappings. Geo-
metrically speaking, our controller space X is bound by the
dimensionality of the input device - the high-dimensional
interpolator of [5] embedded in Rm still consists of piece-
wise linear n-dimensional surfaces when mapping a device
of n dimensions. Similarly, methods such as multilinear or
regularized spline with tension generate an n-dimensional
surface, which can then be embedded in higher dimensional
space. In particular, a perceptual subspace may be defined
as an intermediate layer, and the lower dimensional surface
may be defined on this space. A second mapping can then
relate the perceptual space to synthesis parameters. In this
way, multiple layers of geometric mappings can be used to
fit the perceptual quality of both gesture and the resulting
sound, allowing for controller and/or synthesis algorithm to
be changed without destroying the ”feel” that the interface
possesses. What we examine here is this feel (as well as the
functionality) that the mapping geometry provides.

3. EXAMPLE

In order to focus on the effect of the mapping, a simple
low-dimensional example was preferred to a more complex
performance system. The goal is to illustrate the importance
of the proper choice of mapping given the perceptual nature
of the musical task at hand, while still providing an example
that is intuitive and relevant in a musical context. In this
example, we use the x-y position of a wacom tablet to control
a simple source-filter system in which an harmonic signal is
filtered by a second order IIR filter of the form

y[n] = x[n] + b1y[n− 1] + b2y[n− 2]

This R2 → R3 mapping is achieved by embedding the wa-
com control surface in the synthesis space, so that x-y mo-
tion controls the three variables f0, b1, b2. More specifically,
controlling the filter bandwidth and center frequency allows
the b1 and b2 coefficients to be controlled indirectly by the
relationship

b1 = 2e−πBw/fscos(2πfc), b2 = e−2πBw/fs

where Bw, fs, and fc represent bandwidth, sampling rate
and center frequency.

The x position of the tablet was used to control filter
bandwidth in the range of 1-100 Hertz, while the y position
controlled the fundamental of the sine waves in the range
500-2000 Hertz. However, the x-y surface was mapped such
that the center frequency of the filter, which ranged from
2 to 8 times the frequency of the given fundamental, was
controlled by the pen position. Thus, we set up an exam-
ple musical situation in which slow, smooth gestures can be
used to ”explore” the sonic space in order to scan the har-
monic peaks that occur at the points where fc is resonant.

Changing only the mapping allows us to hear the effect that
is has on the feel of the interface9.

Given the sensitivity of human perception in the chosen
frequency range and the sort of slow ”exploratory” gesture
we were after, we chose to use the two methods that are
globally differentiable - namely multilinear interpolation (in
this case bilinear) and RST. Recall that the former is a grid-
based technique, and so for purposes of comparison we used
the same gridded points for both.

(a)

Figure 2: Stored Data Points for Example

The tests were carried out in Max/Msp, in which we have
written multilinear and RST objects. The stored data points
were evenly spaced in a 7x7 grid across the full range of
possible tablet values in a pyramid configuration, with the
border of the tablet corresponding to a center frequency of
2f0 and the very center of the tablet corresponding to fc =
8f0.

(a) (b)

Figure 3: Example surfaces (a) multi pic (b) rst pic

As the multilinear scheme is exact, the interpolated val-
ues were distributed montonically from edge to center, with
a sharp crease at the midpoint and at the diagonals to form
a pyramid shape. In contrast, the RST mapping provided
approximate values, and so it gave its own global maximum
which was slightly off from the midpoint. As we were con-
cerned with relative as opposed to absolute positioning, the
exact position of the maximum was not an important fac-
tor for this example. As can happen with spline-base tech-
niques, the initial RST mapping produced many overshoots
in value. Using the smoothing and tension parameters, how-
ever, we were able to generate a mapped surface with min-
ima at the edges, a maxima near the midpoint, and a smooth
contour. This ability to adjust the mapping contour is one
of the main advantages of the technique.
9A study in which the authors tested the effect that different
mappings have on expressivity was reported in [11]

Figure 2: Effect of Embedded Surface on Parameter
Control

The tests were carried out in Max/Msp, in which we have
written multilinear and RST objects. The evenly spaced
dots in Figure 3 depict the data points that were stored in a
7x7 grid across the full range of possible tablet values, with
the borders of the tablet corresponding to a center frequency
of 2f0 and the very center of the tablet corresponding to
fc = 8f0.

Figure 3: Bilinear Interpolation and Stored Data
Points

As the multilinear scheme is exact, the interpolated val-
ues were distributed montonically from edge to center, with
a sharp crease at the midpoint and at the diagonals to form
a pyramid shape, as can be seen from figure 3. In contrast,
the RST mapping provided approximate values, and so it
gave its own global maximum which was slightly off from
the midpoint. In this musical context, relative as opposed
to absolute positioning is more important, and so the exact-
ness of point locations is not of great concern. As can hap-
pen with spline-base techniques, the initial RST mapping
produced many overshoots in value. Using the smoothing
and tension parameters, however, we were able to generate
a mapped surface with minima at the edges, a maxima near
the midpoint, and a smooth contour. This smoothness, and
the contrast to the bilinear interpolant can be seen in figure
4, which depicts a 2-dimensional plot of mappings for the
given data points, with a color mapping for the third di-
mension. This ability to adjust the mapping contour is one



of the main advantages of the technique.

Figure 4: left: Bilinear Surface right: RST Surface

In testing these methods there were two differences be-
tween them that were apparent. The first was behavior at
the maximum fc value. As the multilinear technique had
a sharp crease at this point, and as the resonant filter had
a narrow bandwidth, the interpolation produced offset val-
ues at this singular point which caused the frequency value
to jump, thereby losing the strong eighth harmonic pres-
ence. This did not occur with RST, as there were more
values in the proximity of the maximum which diminished
the effect of offset errors. The second difference, which af-
fected the feel of the interface, was the transition into and
out of points of resonance. As the IIR filter used had a
narrow band and sharp resonance, the frequency range was
small and the spectral peaks were sharp. However, using the
multilinear mapping made it difficult to find the harmonic
peaks until they were passed over, causing sharp jumps in
energy at the given harmonic. In contrast, the smoothness
of the RST mapping made it possible to hear when peaks
were close by, allowing more precise control of the sound by
moving around or through these points as desired.

This example illustrates how the context determined the
proper mapping. The gestural and sonic perceptual nature
of the situation called for both local and globally smooth
changes of relative position. Therefore, the RST technique
proved to be better a choice. In situations where discon-
tinuity exists in the signal itself, or where ”glitches” in the
sound are desired for aesthetic reasons, another method may
be more appropriate. In the latter case mappings may be
combined so as to provide a ”texture map” to a musical
control surface.

4. CONCLUSIONS
It is hoped that this paper will facilitate the discussion on

the issue of mapping between controller and sound synthesis
parameters. By introducing mathematical formalisms, func-
tional properties that are relevant in general to computer
music performance may be considered. Doing this provides
a basis for comparison, which we have done here in the case
of explicit continuous mappings. The goal is not to suggest
one method over another categorically, but rather to illus-
trate the importance of the proper selection of mapping.
With this in mind, RST was implemented as it combines
several of the useful properties that we have identified, and
thus offers the possibility of greater flexibility for many real-
time situations. The example provided illustrates how both
the feel and functionality of an interface can be affected by
mappings that have subtle mathematical differences.
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