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ABSTRACT

In network music, latency is a common issue and can be
caused by several factors. In this paper we present MIDI
network streaming with Medusa, a distributed music en-
vironment. To ease the network connection for the end
user, Medusa is implemented using different MIDI APIs:
Portmidi, ALSA MIDI and JACK MIDI. We present the in-
fluence of the MIDI API choice in the system latency and
jitter using the Medusa implementation.

1. INTRODUCTION

Network music tools can provide an easy way to facili-
tate cooperation and collaboration in music. Computer net-
works can be used to connect applications and devices in
live music performances, music recording sessions or re-
hearsals.

To integrate music tools, different data types can be trans-
mitted, such as audio and MIDI. Despite some criticism [1]
about the usage of MIDI in Digital Music Instruments,
MIDI continues to be popular because it is a standard pro-
tocol present in several applications and music devices.

In this paper we will present the network MIDI distribu-
tion using Medusa. Medusa is a distributed music environ-
ment that allows users to share audio and MIDI streams
through computer networks [2]. 1

Currently, different MIDI APIs can be used to imple-
ment a MIDI application in a Linux system, such as ALSA
MIDI, Portmidi and JACK MIDI. The Medusa MIDI im-
plementation recently started running on these APIs in or-
der to simplify integration of different tools over a com-
puter network. Moreover, different APIs can influence sys-
tem latency. In this paper we will present how these APIs
can be used and a pragmatic comparison of these APIs in
the Medusa implementation.

There are a few other related tools that allow realtime
network music content distribution. Netjack [3] is an inter-
nal JACK client in JACK2 that is monitored by JACK and
synchronized by JACK sample rate and JACK transport.
1 The source code of Medusa is available on the project website:
http://sourceforge.net/projects/medusa-audionet
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This tool runs over UDP/IP multicast using JACK MIDI
only, and allows redundancy in data transmission to avoid
glitches [4].

Other network music tools are similar but their music
content is limited to a specific musical data type. QmidiNet 2

is a network music tool that uses UDP/IP multicast to dis-
tribute MIDI streams. Jacktrip [5] and SoundJack [6] are
network music tools that use UDP/IP and provide audio
only music streams.

Another popular music data type used for device com-
munication in music is OSC [7]. OSC does not necessarily
pack MIDI or audio data and it is a network ready musical
protocol. For this reason, we will not discuss OSC in this
paper.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses the MIDI protocol and presents the MIDI
APIs used to develop Medusa. Section 3 presents Medusa
and our proposed MIDI stream implementation. Section
4 presents measurements done with the Medusa MIDI im-
plementation over the previously explained MIDI APIs and
their results. Section 5 presents our conclusion and future
work.

2. WHY MIDI?

MIDI is one of the most widely-used standard protocols for
interconnecting electronic music devices. Proposed as a
unidirectional talker-listener network, MIDI was probably
the first music standard protocol that created possibilities
for music instrument networking [8].

The MIDI protocol facilitates integration between differ-
ent music applications and devices in a single computer.
Some reasons that motivated the development of MIDI in
Medusa are:

• The MIDI protocol enables using digital music in-
terfaces and synthesizers as an alternative or com-
plement to audio transmission channels by reducing
network bandwidth usage.

• MIDI messages can control several music devices
and equipment like mixers and software plugins.

• MIDI Machine Control (MMC) controls recorders
and provides messages that include Play, Fast For-
ward, Rewind, Stop, Pause, and Record.

2http://qmidinet.sourceforge.net/qmidinet-index.
html
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• MIDI Time Code (MTC) is a time protocol that can
be used to sync applications and devices such as loop-
ers and sequencers.

• MIDI Show Control (MSC) is a protocol developed
to control equipment in theaters, live performance,
multimedia installations and similar environments.

These messages can be used to sync and control MIDI ap-
plications and devices that are usually directly connected.
The usage of network MIDI streams can expand the con-
trol and integration possibilities of the MIDI protocol to
a network distributed sound-processing software/hardware
environment.

Different MIDI APIs help software developers to inte-
grate MIDI in music applications.

2.1 MIDI APIs

Initially Medusa was implemented with JACK MIDI only [2].
Since some applications do not implement a JACK MIDI
channel, two other MIDI APIs were integrated in Medusa:
ALSA MIDI and Portmidi.

Since a MIDI event is supposed to be delivered immedi-
ately, the MIDI protocol does not have time-tagging [9].
On the other hand, the MIDI APIs here discussed have
complements to the MIDI protocol that allow synchroniz-
ing different applications. How the application deals with
event sync is an important feature in order to achieve low
latency.

2.1.1 ALSA MIDI

ALSA, the Advanced Linux Sound Architecture, is the part
of the Linux kernel that provides support to USB and PCI
audio / MIDI devices. One of the basic components of
ALSA system is the device driver for sound equipment.

ALSA also provides an API for application development.
This API includes all the required features for developing
audio and MIDI applications that run over ALSA drivers.

ALSA provides two different MIDI event types for MIDI
application development: seq and raw. ALSA seq (se-
quencer) timestamps MIDI messages and monitors ALSA
MIDI software that is bypassed. ALSA raw just operates
MIDI drivers without timestamping.

In ALSA, all MIDI applications are mapped as virtual de-
vices and there is no significant difference between phys-
ical and virtual devices. Once the application has cre-
ated a virtual device, this port stream can be routed to
other devices through a port connection. Some applica-
tions can be used to manage MIDI connections in ALSA,
e.g. qjackctl 3 .

In ALSA seq MIDI, an event uses MIDI ticks for times-
tamping (a discrete time measure related to a track-specific
tempo). Other timestamp information is the relative note
time in seconds and nanoseconds.

2.1.2 Portmidi

Portmidi is part of Portmedia project, a cross-platform API
for music application development. This library supports

3 http://qjackctl.sourceforge.net/

real-time input and output of MIDI data and runs on Win-
dows, MacOS, and Linux [10].

Using Portmidi API, it is possible to list the MIDI de-
vices, physical or virtual, and present their input and output
ports.

Portmidi in Linux runs over ALSA, but differently from
ALSA MIDI it creates a data stream directly connected to a
MIDI device port. This port connection cannot be changed
or routed differently during the application execution.

In Portmidi, a MIDI event has a timestamp related to a
Portmidi internal clock time.

2.1.3 JACK MIDI

JACK (JACK Audio Connection Kit) is a real time low-
latency sound server that allows the creation of audio and
MIDI connections between applications that run on the
JACK API [3]. This sound server runs over different oper-
ating systems such as Linux, Windows and MacOS.

Like ALSA MIDI, JACK MIDI can be used to connect
JACK MIDI capable applications and route MIDI streams
between them. However, Jack MIDI does not access ALSA
MIDI hardware but only FFADO (firewire) MIDI hard-
ware.

Some software bridges, like a2jmidi / j2amidi 4 , can in-
terface Jack MIDI with ALSA MIDI devices in Linux sys-
tems. These applications are an alternative for connect-
ing ALSA MIDI hardware to JACK MIDI capable appli-
cations.

Regarding its performance, there is virtually no jitter in
JACK MIDI and it is sample accurate. JACK MIDI event
process runs with audio sample blocks and for that reason
the system latency can be tuned by adjusting JACK sample
rate and process block size.

JACK MIDI event has a timestamp concept that is not
directly associated with a time clock. It is associated with
the sample position in the audio block associated to this
MIDI event. For this reason, this concept of MIDI event
time depends on JACK audio block size and sample rate.

2.1.4 Theoretical comparison

Despite the fact that these APIs have different approaches
and features, we have grouped some of these features for a
theoretical comparison. A summary of this comparison is
presented in Table 1.

Feature ALSA MIDI Portmidi JACK
Multi-stream Yes No Yes
Cross-platform No Yes Yes
Virtual devices Yes Yes Yes
Multiples devices Yes No Yes
Multiple connections Yes No Yes
Hardware devices ALSA ALSA FFADO

Table 1. MIDI APIs theoretical comparison

ALSA and JACK are the default sound server + driver in
Linux audio context. Being complementary and not con-
current, the choice between one of these APIs depends on
the hardware and software involved. Portmidi in Linux is
4 http://home.gna.org/a2jmidid/
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implemented over ALSA MIDI and combines the possibil-
ity of a direct device connection and porting the application
to other operating systems.

3. MEDUSA

Medusa is a music network environment tool developed
to simplify multichannel audio and MIDI distribution in
computer networks. The Medusa development is divided
into two main lines: 1) a common library (libmedusa) that
contains the network connections, audio and MIDI pack
and transformation, and 2) some specific implementations
to connect libmedusa with different sound APIs [11].

The development is organized in a three layer architec-
ture, as depicted in Fig 1.

Figure 1. Medusa architecture

The Network layer is responsible for creating the net-
work connection and data transmission. Rather than using
only UDP for communication, Medusa implements differ-
ent network transport protocols, namely UDP [12], DCCP [13],
TCP [14] and SCTP [15]. Thus, the user can choose be-
tween a faster and unreliable protocol, namely UDP or
DCCP, or a slower and reliable protocol such as TCP or
SCTP. We grouped the protocol dependent implementa-
tions using two abstractions: a server that sends data to the
network and a client that receives data from the network.

The Control layer is responsible for data management,
data packing / unpacking, and data transformation. Medusa
has two main roles in this layer: sender and receiver. Thus,
a user can choose to provide a network resource as a sender
or to consume a networked resource as a receiver.

Different sounds APIs have different ways to play / cap-
ture audio or MIDI data and need special implementations.
The Sound layer is outside libmedusa and is responsible
for connecting Medusa to specific audio / MIDI systems.
For example, Pure Data uses its own object graphic in-
terface, and a LADSPA plugin has a particular GUI; the
sound layer puts together the sound API and the user ap-
plication interface.

3.1 Medusa data flow

To implement MIDI communication, we developed two
different data flows inside Medusa, one for audio and other
for MIDI, as presented in Fig. 2. While audio can be pro-
cessed, fragmented, converted from different sample rate,
bit depth and byte order, MIDI data flow packs the data

with meta-data to transmit it through the network. The au-
dio data flow converts the audio data to a common format.
With this feature, Medusa can interchange audio and MIDI
data between applications with different audio configura-
tions or be connected through different sound APIs.

Figure 2. Internal Audio and MIDI data flow

3.2 Medusa package

The Control layer packs the sound data for transmission.
This application package has additional meta-data that helps
Medusa management. A field in Medusa package iden-
tifies the data type (audio or MIDI) and the data chan-
nel number. The Medusa package header is presented in
Fig. 3.

Figure 3. Medusa Package

In addition to the data identification and channel address-
ing, the package contains a sequential number to verify
data loss, a timestamp to measure latency and synchroniza-
tion, and a key to separate Medusa data from some possible
network interference.

3.3 Medusa loopback channel

Every network socket is full duplex. Once we have sepa-
rated the sender and receiver roles, this socket feature was
used to implement a loopback channel.

The Medusa loopback channel allows senders and receivers
to measure network performance during data transmission.
When loopback mode is enabled, for every Medusa pack-
age sent by the server, the client will reply with a loop-
back message. The structure of a loopback message, as
presented in Fig. 4, adds two new fields to the Medusa
package. These fields represent the time when the client
received the data package and the time when the client
played the data from the package.

With this implementation it is possible to measure a net-
work performance in different stages: a) the sender adds
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Figure 4. Medusa Loopback Package

the sending timestamp when the data is ready to be sent; b)
when the receiver acquires the package, it creates a loop-
back package using the same packet header timestamped
with the receiving time; c) when the receiver plays the
package data it timestamps the loopback package and sends
it back to the sender; d) the sender returns all the loopback
information to a callback function including the time it was
received.

Thus, a Medusa application can implement a loopback
callback function to measure latency in different commu-
nication stages.

4. PRACTICAL PERFORMANCE
MEASUREMENT

Using Medusa loopback channel we can compare time per-
formance variations between Medusa implementations us-
ing the different MIDI APIs, thus verifying how the choice
of MIDI API influences system latency.

4.1 Measurement environment

To measure the system latency a MIDI sequencer was used
to produce note-on and note-off commands. We chose
Qmidiarp 5 for these tests because it is a MIDI sequencer
that runs over ALSA MIDI and JACK MIDI. Thus, we did
not need to run an extra software bridge to interface be-
tween different APIs.

We set the test loop time to 120 bpm playing two half
notes per bar, which means one note-on and one note-off
per second. The note duration was set to zero which should
result in one note-off event immediately following the note-
on. The test was done by executing the loop 1300 times
which lasted approximately 11 minutes.

We ran two Medusas in the same machine connected us-
ing localhost address. We decided to run these tests on
localhost because the sender and receiver can thus use the
same clock to timestamp the packages. The first Medusa
was sending the MIDI events generated by Qmidiarp and
receiving them back from the second instance which was
set up as a loopback channel.

Theoretically every note-on should be played one second
apart from the preceding and the succeeding note-on, the
same being true of each note-off. We will call this theo-
retical time “expected t(i)” and the actual time when each
event was measured “t(i)”. We assumed that the first event
would happen at time 0 and so all the other expected note
times are integer times relative to the first note. Since the
5 http://qmidiarp.sourceforge.net/

first note can also have some latency, we calculated the
minimum difference between all actual note times and cor-
responding expected note times, as presented in Eqn.1.

min t = |min(t(n)− expected t(n))| (1)

We calculated the latency as an average difference be-
tween the relative note time and the expected note time
adding the minimum latency to all values (Eqn. 2).

latency(∆t) =
1

n

n∑
i=1

(t(i)− expected t(i) + min t) (2)

The jitter was calculated as the mean latency deviation
(Eqn. 3).

jitter =
1

n

n∑
i=1

|rt(i)−∆t| (3)

We also measured the note-off time based on the average
difference between note-off and note-on (4).

∆Note off =
1

n

n∑
i=1

(note off(i) − note on(i)) (4)

4.2 Performance tests results

We calculated the system latency in 4 different stages: 1)
sender transmission time, 2) receiver acquiring time, 3) re-
ceiver playing time and 4) sender loopback receiving time,
as depicted in Table 2.

API Time 1 Time 2 Time 3 Time 4
ALSA MIDI 0.268 0.370 0.745 3.045
Portmidi 2.380 2.574 2.907 5.196
JACK MIDI 3.923 4.033 14.374 14.590

Table 2. Latency measurements (times in ms)

Since the latency varied during the performance, we also
calculated the latency deviation, or jitter, as presented in
Table 3.

API Time 1 Time 2 Time 3 Time 4
ALSA MIDI 0.284 0.295 0.674 1.939
Portmidi 0.609 0.936 0.937 2.016
JACK MIDI 2.749 3.950 2.748 2.759

Table 3. Jitter measurements (times in ms)

The average time difference between a note-on and a note-
off is presented in Table 4. This table also presents the
percentage of note-off events with the same time of the
note-on event and latency jitter.

4.3 Data analysis

The “Time 1” column in Table 2 and Table 3 presents the
latency and jitter in the server. This data represents how ac-
curately the API would play the notes locally. These tables
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API note-off jitter % of same time
ALSA MIDI 0.008 0.009 56%
Portmidi 0.033 0.046 49.5%
JACK MIDI 0.002 0.003 86%

Table 4. Note-off time and jitter (times in ms)

confirm that JACK is the biggest latency adder for play-
ing each note. The data do not confirm the JACK MIDI
theoretical features regarding event synchronization. An-
alyzing the chosen tool documentation, we observed that
Qmidiarp does not use JACK’s MIDI event sample align-
ment feature. We repeated the experiment with other MIDI
tools such as j2a, j2amidi bridge and Hydrogen, but since
they also do not implement this sample alignment feature,
they all present the same issue.

Some other tools implemented over JACK use it only for
audio streams, and use other APIs for MIDI connection;
examples of these tools are Pure Data, QTractor, RoseGar-
den and LMMS. Even if we had chosen one of these tools
to obtain a more precise MIDI event time, this accuracy
would be lost in the MIDI bridge between ALSA MIDI
and JACK MIDI. The only implementation/setup that pre-
sented MIDI event sample alignment with JACK was the
FFADO driver with a firewire sound interface.
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Figure 5. MIDI input latency (Time 1)

The result of the input measurement is depicted on Fig. 5.
In our experiment we noticed that every MIDI event in
JACK was aligned with the first sample of the block, which
explains why JACK latency looks like a sawtooth wave-
form.

In Fig. 5 the worst latency time of a MIDI event is 7.851 ms
with ALSA MIDI, 10.140 ms with JACK and 12.390 ms
with Portmidi.

Portmidi is just a wrapper for developing portable music
applications. In Linux, it runs over ALSA MIDI. Because
Portmidi uses ALSA MIDI through a wrapper interface,
it is predictable that ALSA MIDI performance would ex-
ceed Portmidi. In spite of ALSA’s better outcome, its im-
plementation is not portable and can not be used in other
operating systems.

The second column, “Time 2”, presents the time that Medusa
spent to send the event from the server to the receiver. Sub-
tracting Time 1 from “Time 2”, Medusa latency is between

0.1 ms and 0.2 ms for every API. Since we are running on
the localhost, this time can be understood as the time that
the system spends to pack the MIDI data, copy the data
to the kernel space, copy it back to user space and finally
unpack the data. Medusa transmission time can be consid-
ered small if compared with the API latencies.

The third measured latency is the receiver playing time
(“Time 3”), presented in Fig.6. Again, JACK performance
can be understood as a simplistic implementation of JACK
MIDI sync. Moreover, JACK default is to sync MIDI events
with audio blocks and because of this the JACK configu-
ration influences MIDI latency. In our tests, JACK was
configured with 48Khz sample rate and a block size of 512
samples, meaning that every JACK block is about 10.67ms
long. Since Medusa is not implemented as a JACK inter-
nal client, all received data has to wait for the next JACK
block to be executed. At this stage, ALSA MIDI and Port-
midi latency is very close.
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Figure 6. MIDI output latency

The last latency measured, “Time 4”, is the loopback
time. Since the Medusa loopback package is bigger than
a Medusa MIDI package, the time to receive a loopback
message is bigger than the time to receive a MIDI mes-
sage. These data show that a round trip time to send both
MIDI data and a loopback package is not simply twice the
time to send a package. Furthermore, the loopback time
in Medusa also includes the time to process the data in the
receiver.

The note-off time, presented in Table 4, can be interpreted
as how fast an API responds to two MIDI events occurring
at the same time. Knowing that the application was pro-
grammed to send a note-on and a note-off at the same time,
the way the application reads these events defines how syn-
chronized the events really are. Since JACK aligns both
events with the same sample, it will always be more precise
having the majority of events occurring simultaneously.

5. CONCLUSIONS

In this paper we presented the Medusa MIDI implementa-
tion using different MIDI APIs. We presented these API’s
features and some theoretical comparisons between them.
We also presented the Medusa architecture and how this
tool can be used to obtain feedback about the data trans-
mission. We used the Medusa loopback channel and a
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MIDI sequencer to measure the latency in a network ses-
sion.

Regardless of the best time synchronization advertised by
JACK MIDI, in our measurements we discovered that the
majority of JACK MIDI applications do not use the event
synchronization features present in this API. In our tests,
the JACK MIDI sync feature was present only in a firewire
MIDI interface driver. Unfortunately, several MIDI inter-
faces use a USB connection and are available in Linux
only by ALSA API. Future work should include propos-
ing a better implementation for JACK MIDI applications
concerning the JACK MIDI event sample alignment.

In the latency tests, ALSA MIDI presented the best la-
tency performance. Unfortunately this API exists exclu-
sively for Linux and its implementation cannot be ported
to other operating systems.

Portmidi is a portable API and a solution for porting Medusa
to other operating systems. Portmidi creates a wrapper to
the operating system’s native API and helps developers in
creating portable music applications. Future work includes
testing Portmidi performance in other operating systems.

Our experiments also presented how the different stages
of network communication influence latency. Another im-
portant result was to verify that round trip time does not
reflect directly the time between the data capture in the
sender and the data playing in the receiver.

Since each MIDI API has a different approach and use
context, the present paper does not intend to judge these
APIs but to present some limits to MIDI network streaming
using Medusa.

It is also important to affirm that different implementa-
tions using these APIs may have different results depend-
ing on how the API is implemented or how the application
is executed.

In the future, we intend to consider sending MIDI time-
stamp events in the Medusa package to ensure a better net-
work MIDI synchronization between these different APIs.
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