
A High-Level Review of Mappings in Musical iOS Applications

Thor Kell
IDMIL / CIRMMT, McGill University
thor.kell@mail.mcgill.ca

Marcelo M. Wanderley
IDMIL / CIRMMT, McGill University
marcelo.wanderley@mcgill.ca

ABSTRACT

We present a high-level review of mappings in musical
iOS applications. All of the 38,750 music applications
on the iOS store were reviewed and classified, using their
title and descriptive text. Fifty music-making categories
were found, along with sixteen non-music-making cate-
gories. Summarized mappings for each music-making cat-
egory were defined and enumerated, by downloading and
examining the screenshots for each app in each category.
We present the total mappings, across all fifty categories,
in terms of pitch, trigger, time, volume, and timbre. The
sixteen non-music making categories were overviewed, but
not discussed in detail. We also discuss broad trends and
underutilized mappings, as well as suggesting areas for in-
novation. Finally, we provide public access to the created
dataset, in order to further research around both iOS ap-
plications and text classification. This dataset includes the
title, URL, and descriptive text for all applications, and is
available both classified and unclassifed.

1. INTRODUCTION

Mobile touchscreen devices, such as the iPad and Nexus
10, continue to increase both in number and in power. As
these devices become more powerful and as their sensing
capacity increases, more and more new and novel applica-
tions are created for them. Music applications (apps) for
these devices predominantly exist on the iOS platform [1].
The iOS app store has in excess of 38,000 apps in the Mu-
sic category, ranging from complex synthesis engines to
trivial radio applications.

The mapping of inputs to musical parameters in these
apps is exceedingly important [2]. An iOS device’s pri-
mary input mode is a simple touchscreen, but this can be
mapped in essentially infinite ways. Likewise, the screen
can present a variety of metaphors (keyboards, dials, strings,
etc), in order to suggest a mapping to users. Fels has writ-
ten about how this use of metaphor can inform a user’s
understanding of an app [3], in terms of the relationship
between the mapping of musical parameters and the visual
metaphor presented.

In addition to a touchscreen, iOS devices contain gyro-
scopes, accelerometers, a microphone, and one or more
cameras. This range of controls enables a wide variety

Copyright: c©2014 Thor Kell et al. This is an open-access article distributed under

the terms of the Creative Commons Attribution 3.0 Unported License, which per-

mits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

of musical applications with a wide variety of mappings.
Hunt et al [4] have discussed how the mapping process can
aid in relating these various control layers to the musical
layer. Undestanding how these controls are mapped to cre-
ate music will allow app developers to design novel music
making apps or focus their work into an extant category of
apps.

A previous paper by the authors [5] reviewed the top
1,200 best-selling iOS applications, in terms of the inter-
action metaphor they presented to the user and the exact
mappings that they use. That work defined ten main cate-
gories for iOS music apps, delineated their mappings, and
discussed various outlying apps that did not fit into the ten
standard categories. This paper extends that work by pro-
viding high-level classification for all 38,750 (as of Jan-
uary 28th, 2014) music apps, and a summary of mappings
across all such classifications. This rather large scope was
determined by the lack of access to smaller subsets of the
data. The iTunes store lists the top 1,200 best-selling mu-
sic apps, which was the data source used for the author’s
previous paper. The only other data source is the iTunes
website, which provides data for all 38,750 apps.

Arner has also examined a small subset of iOS apps, with
a focus on their gestural interaction and uses of multitouch [6].
Approaching the problem from the other direction, Tanaka
et al [7] have provided a survey-based analysis of how mo-
bile devices of all sorts are used musically. In terms of
text classification, Zhu et al [8] have examined text and
context-base machine-learning methods for automatically
classifying apps, and Chen & Liu [9] have used similar
techniques to attempt to model how popular various types
of applications are.

This overview will provide large-scale data on how mu-
sical mappings and metaphors are defined on iOS. In addi-
tion to the ten categories defined in our previous work [5],
we define forty new categories of musical apps and delin-
eate their mappings. Moreover, in order to understand the
iOS music ecosystem as a whole, we supply broad classifi-
cations for ‘music’ applications that do not allow the user
to create music, such as radio and artist apps. We provide
summaries of the total number of apps for each category,
the total number of mappings across all apps, and offer
thoughts on how to make use of this data when design-
ing musical mappings and interfaces. We further create a
dataset for future use, consisting of the title, URL, and de-
scriptive text for each of the 38,750 apps, both with and
without classification. This publically avaiable dataset will
assist future studies of iOS applications, and text-based
classification techniques.

mailto:thor.kell@mail.mcgill.ca
mailto:marcelo.wanderley@mcgill.ca
http://creativecommons.org/licenses/by/3.0/


2. METHOD

Data was downloaded from the web-facing iTunes web-
site 1 , using a webcrawler built in Python with the Beauti-
ful Soup 2 framework. In total, 38,750 apps were crawled.
The app name, URL, and descriptive text were saved.

The analysis of this data had two goals. First, to find
all apps that matched the ten known categories listed in
the authors’ previous paper [5]. These categories are: Pi-
ano, DJ, Digital Audio Workstation (DAW), MPC (A pad-
based sampler/sequencer, based on the Akai MPC), Gui-
tar, Drum Kit, Synthesizer, Sequencer, Karaoke, and Amp
Sim. ‘Radio’ and ‘Artist’ apps were added to this list, due
to the large numbers seen during cursory examinations of
the data. The hope was to train a classifier to recognize
these twelve known categories. Once apps that matched
these categories were found, the second goal would be at-
tempted: to discovered and count new categories, ideally
using K-Means or similiar processes.

In order to achieve the first goal, several supervised machine-
learning methods were attempted, using both the TextBlob 3

and SciKit-Learn 4 [10] Python libraries. Training data
was selected by examining apps that included the title of
the category in their name or descriptive text, and then se-
lecting apps that fit into the category in question. 25 to
50 apps were selected for each category. Both Bayesian
classification and Support Vector Machines (SVM) were
trained on this data. Using only the name of each applica-
tion as a feature proved ineffective, as did using the entire
descriptive text. Table 1 shows these poor results for both
Bayes and SVM.

In terms of the Bayesian classifier, this poor performance
is probably due to both the very high number of features
and a high level of inconsistent dependencies among the
dataset [11]. SVM, on the other hand, performs poorly
when the number of features is much larger than the num-
ber of training samples [10]. In this case, each class had
only 25 to 50 samples, with 8,882 features.

A whitelist of words important to each category was thus
constructed. The whitelist can be seen in Table 2. This
reduced the number of features to 114. As Table 1 again
shows, this whitelist improved both the Bayesian and SVM

1 https://itunes.apple.com/us/genre/ios-music/id6011?mt=8
2 http://www.crummy.com/software/BeautifulSoup/
3 http://textblob.readthedocs.org/
4 http://scikit-learn.org/

Table 1. Classification Methods
Method Training Data Whitelist Accurary
Bayes App Name False 0.55
SVM App Description False 0.31

Bayes App Name True 0.77
Bayes App Description True 0.88
Bayes Both True 0.90

SVM App Name True 0.57
SVM App Description True 0.83
SVM Both True 0.90

Table 2. Whitelisted Words per Category
Category Whitelisted Words
Radio Radio, Station, FM
Artist Upcoming, Latest, Bio, Connected, Of-

ficial, Exclusive, Fan, News, Band,
Musician, Composer

Piano Piano, Keyboard, Chord, Scale, Key,
Note, Theme, Hand, Harpsichord,
MIDI

Drum Drum, Drumming, Kit, Drummer,
Snare, Kick, Crash, Ride, Cymbal,
Percussion, Percussionist, Beat, Roll,
Hihat, Hi-hat, Brush, Stick, Bongo,
Conga, Taiko

Guitar Guitar, String, Strum, Strumming, Vi-
brato, Tremolo, Electric, Tab, Twang,
Mandolin, Steel, Pedal

Karaoke Sing, Song, Karaoke, Star, Catalog,
Share, Recording, Stage

DJ Turntable, Deck, Scratch, Mix, Mixer,
Mixing, Cue, Crossfader, Sync, Beat-
match

MPC MPC, Pad, Sample, Production, Akai
Sequencer Sequence, Sequencer, Groovebox,

Beatbox, Step, MIDI, Pattern, Tempo,
BPM, Machine

DAW Loop, Record, Recording, Audio,
Band, Mixer, Aux, Produce

Synth Analog, Analogue, Engine, Filter, Fat,
Envelop, Synth, LFO, Polyphonic,
Monophonic, Sine, Square, Triangle

Amp Sim Rig, Cabinet, Mic, Stomp, Amp, Tube

classifications, using both the app name and descriptive
text to 90% accuracy, on the test dataset.

As the SVM model using both the app name and the de-
scriptive text was producing good results on the test data,
the next step was to run the trained model on the entire
dataset. This was done category by category, in order to re-
move classified apps with each iteration. The results from
this, as seen in the first column of Table 3 seemed reason-
able, at first blush. However, a manual examination of the
remaining apps showed that many, especially Radio apps,
were missed, suggesting that the models were overfitting to
the test data. In hindsight, comparing the results between
the columns of Table 3 show that some of the tested cat-
egories worked very well (Piano), while others did very,
very badly (Radio).

These results were probably due to insufficiently trained
models. Each category only had 25 to 50 apps to train on,
and they were selected iteratively through the dataset, not
at random. Radio apps, it would appear, are much more
heterogenous than the training data that was used.

In addition to attempting to classify known categories of
applications, the second goal was to define new categories
- ideally by clustering unclassfied apps together. This was
first attempted on test data, and did not give good results.
Using SciKit-Learn’s K-Means algorithim on the twelve



Table 3. Estimated Results vs. Actual Results
Category Estimated Actual
Radio 5288 10057
Piano 798 752
Drums 644 741
Karaoke 740 246
DAW 226 138
MPC / Sampler 220 136

Table 4. Clustering Results
Cluster Number of Apps Number of Categories
1 6 1
2 94 9
3 29 3
4 191 12
5 3 1
6 14 1
7 27 6
8 57 7
9 24 2
10 63 5
11 19 6
12 2 1

categories of test data was ineffective, even when using the
whitelisted name and the whitelisted description. The apps
both failed to cluster in groups around their categories, and
failed to give correct numbers of apps per cluster. Table 4
shows the number of apps per cluster, and Table 5 shows
the categories per cluster. Figures 1 and 2 shows the re-
sults of this clustering, with its dimensionality reduced via
principle component analysis (PCA). As can be seen, each
cluster does not contain only a single category. It was also
hoped that PCA might allow for manual segmentation of
each category. However, as can be seen by the PCA of the
data in Figure 3, this was not possible: the categories are
too intermingled to be able to draw useful segment bound-
aries.

Figure 1. Labeled K-Means clusters.

Table 5. Clustering Breakdown
Cluster Category Breakdown
1 Radio: 6.

2
Guitar: 29, Piano: 21, Karaoke: 14, DAW: 9, DJ:
8, Amp: 6, Synth: 3, Artist: 2, Sequencer: 2.

3 Drum: 15, MPC: 9, Sequencer: 5.

4
Artist: 67, Synth: 34, Piano: 25, DJ: 22, Guitar:
15, Sequencer: 13, Radio: 5, Amp: 3, MPC: 3,
Drum: 2, DAW: 1, Karaoke: 1.

5 Drum: 3.
6 Radio: 14.

7
Karaoke 9, Amp: 8, Guitar: 5, Piano: 2, DAW: 2,
Sequencer: 1.

8 Sequencer: 16, DJ 14, Synth: 10, MPC: 10, Drum:
4, DAW: 3.

9 Radio: 23, Artist: 1.

10 Drum: 26, MPC: 19, Sequencer: 13, Synth: 3,
DAW: 2.

11 Amp: 9, DAW: 5, Piano: 2, DJ: 1, Guitar: 1,
Karaoke 1.

12 Radio: 2.

Figure 2. Labeled K-Means clusters, zoomed in.

Figure 3. PCA data, zoomed in.



Given the difficulty clustering known data, perhaps due
to K-Means’ difficulty with clusters of varying shapes and
densities (as seen in Figure 1), clustering the entire dataset
was even less viable, especially as the total number of cat-
egories was not known and the whitelist would be inef-
fective on these unknown categories. This left us with
a somwhat effective method of classifying known cate-
gories, and an ineffective method of finding new categories.

During this process it was discovered that, for a human,
classifying each application based on the whitelisted name,
the shortened app name in the URL, and the whitelisted
descriptive text was simple to the point of trivial.

For example, the below three strings strongly suggests an
Artist application:

• “ ”, “amon-amarth-mobile-backstage”, “official fan
exclusive fan”

Likewise, these strings suggest a Amp Sim application:

• “ ”, “ampkit”, “amp guitar amp electric guitar amp
guitar amp mic pedal guitar recording share guitar
fan”

In contrast, the below descriptive text suggests a Synth,
but the name suggests a novel application.

• “ ”, “anckorage-spring”, “audio connected keyboard
midi engine midi midi midi midi”

In this case, the entire descriptive text was checked in a
second step, and the application was then correctly classi-
fied as a Synth. The descriptive text is excerpted below:

“Anckorage Spring is a physical modelling audio synthe-
siser based on the simulation of a set of connected mass-
spring, integrating non-linearities, fluid and static friction,
mechanical limits, gravity and bouncing. It is designed to
be controlled by a continuous controller (like the Haken
Continuum www.hakenaudio.com)...”

Using this method it was found that 500 apps, with the
use of a Python script to skip through them, could be shunted
into the initial twelve categories in as little as fifteen min-
utes, giving a ‘mere’ 39 hours to complete the task of man-
ual classification. This is, of course, not to say that text-
based machine learning is ineffective. Zhu et al [8] have
made use of text data to successfully classify apps (though
only 680 of them) of them, and Whitman et al [12] have
used natural language processing and text-based machine
learning on community metadata as a key component of
their work in classifying music. The present paper, how-
ever, was simply looking to classify a large number appli-
cations with a high degree of accuracy, not investigate ma-
chine learning techniques. Manual classification also had
the advantage of being completable in a known, though
long, amount of time, whereas automatic classificaiton pre-
sented a very open-ended problem. Furthermore, good,
manually classified data could also be used as ground truth
data for future investigations of text-based classifications
and of the iOS app store.

It was thus decided to manually classify the data. Af-
ter the first 10,000 apps had been classified by hand, two
heuristics were added to speed the process: apps that had

‘radio’ in the name were immediately defined as Radio ap-
plications, and apps that had whitelisted descriptive text of
‘official update new connect’ were immediately defined as
Artist applications.

During this process, many applications could not be fit
into the twelve known categories. Those were logged sep-
arately, and then examine with the full text of their names
and descriptive text. Out of those apps, new categories
(accordion apps, for example) were defined, based on the
descriptive text. Totally novel apps were again logged sep-
arately. Due to time constraints, the 481 novel applications
were not examined in detail.

Once this two-tiered process was complete, each category
was counted. In order to define the mappings for each cat-
egory, the screenshots for each app in each category were
downloaded and examined, again using a web crawler. In
some few cases, (the Karinding, for example) videos of
apps were examined in order to define the mappings. Only
the general mappings for each category were defined. For
example, if all but one Xylophone app maps pitch to the
colours of the rainbow, the Xylophone category as a whole
will be assigned this mapping of pitch to colour.

2.1 Verification

This classification process is not a perfect one. Even ig-
noring typos, this sort of fast human classification is prone
to errors. In order to verify the quality of this method,
100 randomly selected apps were examined using their full
name and full descriptive text: 94 were correctly classified,
and 6 were incorrect. Then, 100 more randomly selected
apps were tested, ignoring apps from the Radio, Artist, Me-
dia, and Non-English categories. Once again, 94 were clas-
sified correctly, and 6 were in error. It must also be noted
that the Media, Educational, and Tool categories contain
many interesting apps that are outside the scope of this
paper. More in-depth app reviews would be well served
to begin with these categorizations - to say nothing of the
various applications in languages other than English.

3. RESULTS

3.1 Music-Making Applications

Applications that allow the user to produce music are, of
course, the focus of this paper. Table 6 shows the number
of applications in each category for these music-making
applications. Each of these categories also include appli-
cations with similar layouts. The ‘Guitar’ category, for ex-
ample, also includes lute, banjos, mandolins, ukeleles, and
so on. Categories that may require further explanation are
listed below:

• Ball Sim - Apps that trigger sounds via a physics
simulation of balls or other objects moving around.

• Chord Sequencer - Apps that allow the user to se-
quence symbolic representations of chords, either in
guitar tablature or text / numeric format

• Dulcimer - Western dulcimers, hammered dulcimers,
and so on.



• Gamelan - Indonesian Gamelan instruments, include
bells, gongs, and metallophones.

• Guqin - The guqin is an ancient Chinese zither, with
angled strings.

• Hang - The hang is a modern pitched percussion in-
strument, similar to the steelpan.

• Kalimba - The kalimba, or thumb piano, is an African
plucked percussion instrument.

• Karinding - The karinding is an Indonesian mouth
harp.

• Looper - Apps that loop audio recorded by the user,
rather than sequencing samples.

• Melodica - A reed-based wind instrument, with a
small keyboard for selecting pitches.

• MIDI / OSC - Apps that output MIDI or OSC, to
control other devices. As these apps vary wildly,
their mappings are not included in the final count.

• Ocarina - The ocarina, a simple wind instrument, oc-
curs in many cultures, but is perhaps most famous
for its role in the ‘Ocarina of Time’ video game.

• Ondes Martenot - An early 20th century electronic
instrument, featuring both ribbon and keyboard con-
trol of pitch.

• Steelpan - A pitched percussion instrument, origi-
nally from Trinidad & Tobago.

• Vuvuzela - A trombone-like South African instru-
ment instrument, with a single pitch.

• Zither - Eastern zithers, including the guzheng, jen-
treng, qanun and gayageum.

3.2 Non-Music-Making Applications

Broad categories were defined for apps that do not make
music. These make up the majority of the music section
of the app store. Table 7 shows the numbers of apps per
category, and each category is defined below. This section
also includes ‘Junk’ apps that are not music apps at all,
and apps that were unclassifiable due to their descriptive
text not being in English.

• Radio - Apps for a particular radio station, that as-
semble many radio stations, and so on.

• Media - Apps that deliver non-auditory media, al-
low for the playback of auditory media in a non-
musical way, including soundboards, ‘best songs’
for a genre, and so on.

• Artist - Apps for promoting a particular artist, a group
of artists, a festival, a recording studio, and so on.

• Non-English - Apps with descriptive text not in En-
glish, and thus not reviewable in this paper.

Table 6. Number of Applications per Category, Musical
Applications

Rank Category Number of Apps
1 Piano 752
2 Drum 741
3 Sequencer 606
4 Novel 481
5 Guitar 385
6 Synth 277
7 Karaoke 246
8 Effect 149
9 DAW 138
10 MPC / Sampler 136
11 Xylophone 132
12 DJ 119
13 Accordion 74
14 Band 67
15 Flute 67
16 MIDI / OSC 65
17 Harp 47
18 Amp Sim 45
19 Bells 40
20 Looper 36
21 Chord Sequencer 36
22 Bagpipes 33
23 Notation 33
24 Steelpan 33
25 Violin 31
26 Organ 25
27 Gamelan 24
28 Trumpet 23
29 Ball Sim 23
30 Zither 17
31 Harmonica 16
32 Kalimba 15
33 Clarinet 13
34 Water Glasses 11
35 Trombone 9
36 Dulcimer 9
37 Singing Bowl 9
38 Cello 9
39 Saxophone 8
40 Horn 7
41 Melodica 6
42 Vuvuzela 5
43 Ocarina 4
44 Washboard 4
45 Conductor 3
46 Hang 3
47 Pan Pipes 2
48 Ondes Martenot 2
49 Guqin 1
50 Karinding 1



• Educational - Apps for teaching an instrument, a the-
oretical concept, and so on.

• Tool - Apps for accomplishing music related tasks,
including tuners, spectrum analyzers, and so on.

• Games - Apps for playing games about music or mu-
sicians

• Junk - Apps that have been mislabled and are not
music apps.

• Remote - Apps for remote control of non-musical
audio systems, such as home theatre systems.

• Discovery - Apps for finding new music, new playlists,
and so on.

• Christmas - Apps about Christmas.

• Print - Apps for a particular print magazine, or emu-
lating a print magazine.

• Recorder - Apps for recording sound.

• Social - Apps for communicating about music on
Twitter or other social media platforms.

• Fitness - Apps for controlling music while working
out.

• Fingerprint - Apps for fingerprinting audio.

Table 7. Number of Applications per Category, Non-
Musical Applications

Category Number of Apps
Radio 10057
Media 7416
Artist 7161
Non-English 2806
Educational 2052
Tool 1406
Games 905
Junk 354
Remote 334
Discovery 272
Christmas 268
Print 249
Social 220
Recorder 154
Fitness 50
Fingerprinter 20

4. MAPPINGS

Table 8 shows the total mappings, across all categories.
The mapping definitions used are hopefully self-explanatory.
In terms of those that are less clear, a ‘Known Layout’
refers to an app that matches the visual layout of a real
instrument, and maps some parameter based on this in a

way that does not fit into any other category. For example,
a drum application maps timbre based on a Known Layout
- that of a drum kit.

‘Force’ here means methods of determining how hard the
user is tapping the device, often by polling the accelerom-
eter or the microphone. A ‘Gesture’ indicates any motion
more complex than a touch, typically a dragging or cir-
cular movement. When applied to the Volume parameter,
this indicates that the speed of the gesture directly varies

Table 8. Mappings for Musical Applications
Mapping Pitch Trigger Time Volume Timbre
Horizontal:
Left-to-
Right

2142 0 1559 138 141

Horizontal:
Right-to-
Left

11 0 0 128 0

Horizontal:
Center-to-
Edge

15 0 0 0 0

Vertical:
Top-to-
Bottom

35 0 152 0 0

Vertical:
Bottom-to-
Top

1307 0 0 1483 1358

Diagonal:
Bottom-
Left-to-Top-
Right

38 0 0 0 0

Rotational:
Clockwise 0 0 9 0 0

Circular 33 0 0 0 0
Radial:
Edge-to-
Center

33 0 0 0 0

Grid 43 0 0 0 0
Vertical Size 105 0 0 0 0
Overall Size 33 0 0 0 0
Colour 78 0 0 0 12
Symbolic /
Text

69 0 33 33 33

Continuous 190 0 612 1630 1498
Discrete 3931 0 1042 33 33
Playback 0 1104 0 0 0
Toggle 8 272 0 9 1207
Touch 0 3096 0 24 25
Gesture 0 86 0 10 2
Shake /
Swing 0 20 0 20 0

Known Lay-
out 167 0 0 0 746

Microphone
Input 0 282 0 36 0

Audio Input 0 194 0 0 0
Force 0 0 0 81 0
Physics 12 23 0 23 18



the volume of the sound. Finally, vertical mappings re-
fer to the gesture used, not the metaphor presented: many
apps present the user with rotary knobs which are actu-
ally controlled by vertical motion. This paper has used the
mapping throughout, rather than the metaphor.

4.1 Pitch

Pitch is dominated by keyboard-like, left-to-right or bottom-
to-top mappings. Discrete pitches are likewise much more
prevalent than continuous pitch. Some few apps increase
pitch from top to bottom (zithers, for example), and even
fewer increase pitch from right to left (trombones and pan
pipes, in particular). Outside of these linear mappings, the
next most popular mapping for pitch is the ‘Known Lay-
out’ of wind instruments, which is usually abstracted to a
set of 3-6 buttons that additively modify the pitch: press-
ing two buttons together gives a new pitch, rather than two
pitches.

Mappings of pitch to colour are not uncommon, but a sin-
gle dominant mapping of colour to pitch was not found.
Likewise, mappings of pitch to size exist, but are always
secondary to some other mapping (horizontal in the case
of xylophones, and circular in the case of steelpans). Sym-
bolic and text mappings are entirely based on various West-
ern systems, including the sharps / flats of traditional staff
notation, and various representations of chords (V6, Dm7,
etc).

4.2 Trigger

Unsurprisingly, given that the primary interaction method
on iOS devices is a touchscreen, mapping one touch to one
sonic event is by far the most popular method for trigger-
ing sounds. Toggles are also popular, along with events
or states that are often controlled by toggles, such as the
playback of a sequencer or audio input from another de-
vice. Gestural mappings are not common, and mostly use
simple movements: a circular motion to trigger a drum roll
instead of a single drum hit, for instance. Making use of
the device’s other sensors, via a swing or a shake of the
device, is not common. No applications were found that
trigged sounds via a gesture made by moving the device
itself - such mappings, may, however, exist in one of the
unexamined Novel apps.

4.3 Time

Time moves from left to right, and from top to bottom.
Discrete time is slightly more prevalent than continuous
time. Some very few apps map time rotationally, clock-
wise. Even in Notation apps, where time & rhythm is rep-
resented symbolically, the flow of time is from left to right.

4.4 Volume

Volume is dominated by vertical mappings, usually pre-
sented continuously. Some apps make use of force-based
or shake/swing methods for determining volume. These,
along with wind instrument apps that base volume on the

input from the microphone, are the closest to ‘real’ acous-
tic instruments. An even smaller but more interesting map-
ping is that of touch / gesture to volume. For instance,
some Gamelan apps allow for virtual bars to be muted by
touching them in particular locations, and some Singing
Bowl and Water Glass apps play louder sounds based on
the speed of the triggering circular gesture.

4.5 Timbre

Like volume, timbre is mostly controlled vertically and
continuously. Many apps use toggles to change between
preset timbres (in piano apps, for instance), and many use
Known Layouts to control the timbre of the sound played
- drum kits are a prime example of this. Other timbral
controls are much more rare. Surprisingly, colour is only
used rarely for timbral control. However, like Volume, a
very small number of apps use additional touches to con-
trol timbre. To continue the Gamelan example, some apps
also allow for a muted timbre to be played if a virtual bar
is touched before triggering it.

4.6 Summary

From Table 8 and the above paragraphs, it is clear that most
apps use typical mappings: pitch from left to right, sounds
triggered by touch, and volume / timbre controlled by ver-
tical faders. Most of these mappings do not take advantage
of sensors outside of simple touch and location. Complex
gestures, microphone input, and shaking/swinging the de-
vice are used to control parameters from pitch to volume to
timbre for a small number of applicatons, but are in general
ignored. Likewise, most apps separate the control of each
parameter, mapping them to different controls and in dif-
ferent ways. Integral mappings are almost entirely ignored.
The 481 apps in the Novel category have not been exam-
ined, however. They would almost certainly contribute to
making Table 8 more varied.

5. DATASET

In order to further research around iOS music apps, we
have made the dataset and Python scripts used to exam-
ine the data publicly available The data (consisting of the
name, url, and descriptive text for each app) is provided,
classified and unclassified, in order to allow for a wide
variety of machine-learning approaches and/or brute-force
approaches. The complete collection of data and code can
be found at idmil.org/projects/ios mappings

6. CONCLUSION

We have provided a high-level review of all music apps on
the iOS app store as of January 2014. This builds upon the
authors’ previous paper [5], which provided an in-depth
look at the most popular iOS music apps. We have also
provided the raw text data, classified and unclassified, for
future research around text-based machine learning, app
classification and more.

In the review itself, we discovered many new iOS instru-
ments that represent extant, acoustic instruments, ranging



from bagpipes to zithers. We also discovered a smaller
number of new, purely electronic instrument categories, in-
cluding loopers, chord sequencers, and bouncing-ball apps.
We provided a high-level overview of mappings for each
of these categories: this data will be useful both for un-
derstanding the overall iOS application ecosystem and the
musical subset thereof. More importantly, this data can be
used to understand how musical parameters are mapped on
touchscreen devices, and thus influence how new musical
applications are designed.

To be specific, we can see the dominance of simple map-
pings: pitch generally moving horizontally and discretely,
volume and timbre moving vertically and continuously, and
time moving from left to right. Although many applica-
tions make use of more complex mappings and more com-
plex inputs, they are in a minority. This is a potentially
rich area for innovation: one can easily imagine apps that
use the microphone, accelerometer, and gyroscopes of iOS
devices in new and interesting ways. Likewise, integral
mappings for timbre and volume or non-traditional repre-
sentations of pitch / time could both lead to interesting and
innovative apps for making music.

Further work after such a high-level review is legion. A
detailed examination of the Media, Educational, and Tool
categories should be done, and would no doubt reveal sundry
new ways to map musical parameters, in tuning apps, how-
to-play apps, and so on. Indeed, a deep dive into each of the
main categories described above could provided further de-
tail about how each category maps parameters. Likewise,
the 481 Novel applications should be examined in detail.

Touchscreen devices, and iOS in particular, are here to
stay, and the ability of these platforms to create music at all
levels of sophistication is only going to grow. This report
has furthered the task of understanding how musicians and
developers are dealing with the mapping of music parame-
ters, and will hopefully result in a deeper understanding of
the mapping process and its outcomes.

Acknowledgments

Special thanks to Vanessa Yaremchuk for her knowledge
of machine-learning methods.

7. REFERENCES

[1] E. van Buskirk, “Developer Explains
Why Android Sucks for Some Au-
dio App,” http://evolver.fm/2012/05/23/
developer-explains-why-android-sucks-for-some-audio-apps/,
05 2012, accessed: 24/02/2013.

[2] A. Hunt, M. M. Wanderley, and M. Paradis, “The im-
portance of parameter mapping in electronic instru-
ment design,” Journal of New Music Research, vol. 32,
no. 4, pp. 429–440, 2003.

[3] S. Fels, A. Gadd, and A. Mulder, “Mapping trans-
parency through metaphor: towards more expressive
musical instruments,” Organised Sound, vol. 7, no. 2,
pp. 109–126, 2002.

[4] A. Hunt, M. Wanderley, and R. Kirk, “Towards a model
for instrumental mapping in expert musical interac-
tion,” in Proceedings of the 2000 International Com-
puter Music Conference, 2000, pp. 209–212.

[5] T. Kell and M. M. Wanderley, “A quantitative review of
mappings in musical ios applications,” in Proceedings
of the Sound and Music Computer Conference 2013,
2013, pp. 473–480.

[6] N. F. Arner, “Investigation of the use of Multi-Touch
Gestures in Music Interaction,” Master’s thesis, Uni-
versity of York, 2013.

[7] A. Tanaka, A. Parkinson, Z. Settel, and K. Tahiroglu,
“Survey and thematic analysis approach as input to the
design of mobile music guis,” Proceedings of the In-
ternational Conference on New Interfaces for Musical
Expression, 2012.

[8] H. Zhu, H. Cao, E. Chen, H. Xiong, and J. Tian, “Ex-
ploiting enriched contextual information for mobile
app classification,” in Proceedings of the 21st ACM in-
ternational conference on Information and knowledge
management. ACM, 2012, pp. 1617–1621.

[9] M. Chen and X. Liu, “Predicting popularity of online
distributed applications: itunes app store case analy-
sis,” in Proceedings of the 2011 iConference. ACM,
2011, pp. 661–663.

[10] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay, “Scikit-learn: Machine learning in Python,” Jour-
nal of Machine Learning Research, vol. 12, pp. 2825–
2830, 2011.

[11] H. Zhang, “The optimality of naive bayes,” in Proceed-
ings of the FLAIRS Conference, vol. 1, no. 2, 2004, pp.
3–9.

[12] B. Whitman and S. Lawrence, “Inferring descriptions
and similarity for music from community metadata,” in
Proceedings of the 2002 International Computer Music
Conference. Citeseer, 2002, pp. 591–598.

http://evolver.fm/2012/05/23/developer-explains-why-android-sucks-for-some-audio-apps/
http://evolver.fm/2012/05/23/developer-explains-why-android-sucks-for-some-audio-apps/

	 1. Introduction
	 2. Method
	2.1 Verification

	 3. Results
	3.1 Music-Making Applications
	3.2 Non-Music-Making Applications

	 4. Mappings
	4.1 Pitch
	4.2 Trigger
	4.3 Time
	4.4 Volume
	4.5 Timbre
	4.6 Summary

	 5. Dataset
	 6. Conclusion
	 7. References

