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ABSTRACT

Two types of artificial neural networks are used to determine
a sufficient subset of data for reasonable classification of mu-
sical instrument based on performance data from motion
capture. Feedforward and recurrent networks are trained on
subsets of joint angles and centre of mass from performances
by violists and clarinettists. A successfully learned mapping
from the reduced set of input data to the correct instrument
classification implies that the data subset carries sufficient
information to identify an instrument. After training, cross-
validation is performed by testing networks on previously
unseen data. Finally, performance is compared with that of
humans performing similar classification tasks based on the
same data.

Feedforward and recurrent networks are found to perform
similarly when classifying test data. Instrument recogni-
tion rates by networks are comparable with human recog-
nition rates over the various data subset conditions. The
methods demonstrated here could also be applied to other
movement analysis domains (e.g. gait, posture, kinematics,
clinical/rehabilitation work).

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning—Connectionism

and neural nets
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The study of performer movements can be used toward
understanding movement consistency within and across per-
formers and musical instruments. Movement analysis uses
objective data to measure, evaluate and understand per-
former movement. One approach to acquiring quantitative
data is to use motion capture methods which record spatial
coordinates of markers positioned on the musicians’ bodies,
along with corresponding temporal information, video, and
audio. Information about the position of markers is used
to calculate three dimensional positions and angles of limbs
and joints.

While motion capture provides accurate data about a sub-
ject’s movements, it is necessary to find a method to miti-
gate the overwhelming amount of data in order to study it.
There are many different approaches for dealing with this
issue. Examples include the use of functional data analy-
sis[7], and sonification of movement data[6]. In addition to
these methods of reducing the data to be further analysed,
it is useful to explore what important information is in the
movements. One possible solution is to use machine learn-
ing, and, in particular, artificial neural networks (ANNs).

The ancillary and expressive movements (i.e., those that
do not directly influence the generation of sound) of perform-
ers convey information to the observer or audience. Ancil-
lary movements have been studied across a variety of in-
struments including stationary instruments such as piano[4,
3], or marimba[2] as well as mobile instruments such as
the bassoon, saxophone[2], clarinet[8], and violin[3]. Across
these instruments, ancillary gesture was found to convey in-
formation about the performer and their expressive intent.
This paper considers whether there are consistencies within
groups of musicians performing with the same type of in-
strument.

When considering human perception of instrument iden-
tification, it can be useful to study the amount of informa-
tion present, from a machine learning perspective, in the
data. That is, if one considers musicians during perfor-
mance, there is some minimal amount of information about
movement required to make a correct instrument classifica-
tion. Whether or not this set of information is also sufficient
for human perception of the instrument is a further question,
but one whose boundaries can be informed by the machine
learning result. Similarly, it is useful to consider what is a
sufficient subset of data for reasonable classification perfor-
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mance. Training ANNs on different subsets of movement
data is one way of exploring this topic. If a network can
learn a function that maps from the reduced set of data as
input to the correct classification of the instrument, then the
data set represented by the input data is sufficient.

2. GENERAL METHOD

2.1 Training Data
Current and previous work at the Input Devices and Mu-

sic Interaction Laboratory (IDMIL) includes the creation
of databases of motion capture data from performances of
various instruments by student and professional musicians
recorded at the IDMIL. These data include spatial coordi-
nates of the markers positioned on the musicians’ bodies,
along with corresponding temporal information, video, and
audio.

ANNs were trained on subsets of data from motion cap-
ture sessions of violists and clarinettists playing excerpts of
J. Brahms’ Sonata Op. 120 No. 1. The piece is for piano
and clarinet or viola, so the same excerpts were performed
by both the violists and the clarinettists. The data used
in training came from several motion capture sessions, each
with a different performer. A subset of 50 frames from each
session was used, corresponding to approximately 0.5 sec-
onds of gesture data from each performer.

The motion capture system calculates positions of markers
as well as angles at joints, so with the exception of the cen-
tre of mass networks, angles were used in order to eliminate
the possibility of unintentionally training the ANN to dis-
tinguish between performers based on height. This was only
a concern because the number of performers is fairly small;
if hundreds of performers were being used the chances of
ANNs of these size memorising heights is vanishingly small.
It would also have been effective to use positional data and
normalise them across all the performers, but as the angle
data are already calculated by the motion capture system
those additional preprocessing steps were avoided. The mo-
tion capture system also calculates a 2-dimensional projec-
tion of the centre of mass, which eliminates the axis corre-
sponding to height, so this was used in the corresponding
training sets instead of normalising the centre of mass data
for performer height.

In all of the cases, the input was paired with a desired
output of -1 if the data came from a session where a clarinet
was played, and with a desired output of +1 if the data came
from a motion capture session with a violist.

2.2 Network Architecture
Two types of network were used: a feedforward network

and a recurrent network. The motion capture data is time-
sequential, so this allowed investigation of possible improve-
ments gained by a method that takes sequence into account.
In a feedforward network, information only flows in one di-
rection. It flows from the input layer to each consecutive
hidden layer to the output layer. In a recurrent network,
there are some connections that send information back to a
previous layer. This allows the current input to affect the in-
ternal state of the network when the next input is presented.
This means that order matters. The recurrent network has
some sense of sequence; the feedforward network does not.
Changing the order in which inputs are presented does not
change the feedforward network’s response to any individual

input, but it can change the response given by a recurrent
network. (This can be seen as similar to the difference be-
tween finite and infinite impulse response filters.)

Both feedforward networks (multilayer perceptrons) and
recurrent networks (specifically layer recurrent networks)
were implemented using MATLAB’s Neural Network Tool-
box. Both the multilayer perceptrons and the layer recur-
rent networks have one hidden layer, use tan sigmoid ac-
tivation functions, and use mean square error for the net-
work performance function (which weight adjustment dur-
ing training is done to minimise). The feedforward network
uses Levenberg-Marquardt for the backpropagation training
function, and the recurrent network uses Bayesian regular-
ization. The layer recurrent network has a feedback loop
with a single time-step delay around each layer of the net-
work with the exception of the last layer.

All of the ANNs had one output, and a set of inputs corre-
sponding to a subset of motion capture data. For instance,
an ANN trained to classify the instrument—given informa-
tion about the performer’s lower body—would have 18 in-
puts: one input for each of the three axes for each angle
corresponding to the ankle, knee, and hip joints for each
leg. During training, a value within error tolerance of -1 in-
dicated clarinet, while a value within error tolerance of +1
indicated viola. If the output value did not fall within the
error tolerance of either -1 or +1, it was considered to have
indicated neither instrument.

2.3 Stopping Criteria
A decision needs to be made about when the network

training phase is complete. There is not a single stopping cri-
teria for multilayer perceptrons in general; instead there are
a set of criteria each with different benefits to recommend it
[5]. Consider an error surface with local and global minima,
that is traversed during training. A possible convergence cri-
teria is for the gradient, with respect to the network weights,
to be within a small threshold of zero. (This is because the
gradient approaches zero as it approaches a minimum in the
surface.) Use of this criteria can sometimes lead to very
long training periods. Another possible convergence criteria
is when the change in average squared errors from the previ-
ous epoch to the current training epoch is sufficiently small.
In general, this reduces the training length but increases the
risk of ending training prematurely. A third option is for the
convergence criteria to be based on generalisation perfor-
mance, by using cross validation. In this case, the network
is tested on a separate data set not included in the training
set; this approach is useful in avoiding overfitting. Matlab’s
Neural Network Toolbox accommodates all of these options,
allows them to be used in combination, and by default ran-
domly divides the data into 3 sets: 60% for training, 20% to
validate generalisation, and 20% for an independent test of
the network. This work used a combination of the stopping
criteria and compared cross validation results across criteria
as discussed in section 3.

2.4 Network Evaluation
The networks produce an output for each frame of data

from the motion capture session, but a single classification
should be made for each full motion capture session. This
produces two places in which an evaluation of network per-
formance could be made: single frame response, and overall
session response. The networks do not produce one response
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per motion capture session on their own, so it has to be de-
cided how the collection of responses to all the frames in a
session combine to indicate a classification of viola or clar-
inet or neither.

In deciding what constitutes a correct classification, one
option is to use the same strict criteria used during network
training. A drawback to this approach is that it is unlikely
to deal well with previously unseen performers. There is a
trade-off where overly relaxed criteria result in too strong
of an effect from noise whereas too strict a set of criteria
for correctness eliminates the potential for generalisation.
Another option is to decide upon an acceptable degree of
confidence for the particular classification task, or even to
produce results based on more than one tolerance for the
sake of comparison. However, this approach doesn’t allow
for as nuanced a comparison between networks that perform
similarly well. In this work, performance is measured with
respect to how large the error tolerance would need to be in
order for an acceptable majority of classifications to be cor-
rect. These error tolerance ranges are produced for 50% +1
of the classifications to be correct. This has the additional
benefit of producing a single performance measurement for
each session.

In the cases where the necessary error tolerance ranges
would overlap with a correspondingly large range for the
other possible classification, the network has not performed
the classification correctly. For example, if the necessary
range for an acceptable majority of frame classifications from
a viola performance to be considered correct is -0.5 to 2.5
then a correspondingly large range for clarinet data would
be -2.5 to 0.5, and as they overlap the network classification
of that particular file is not correct. In the remaining cases,
the size of the ranges give a measurement of how well or
how precisely the network made a classification. There are
32 test files from different motion capture sessions (2 sessions
each from 16 different musicians) and an individual network
produces a required error tolerance range for each file. The
files used in testing are different from those used as sources
for training data, so while a subset of the musicians in the
test files have been used in the training sets, the specific
performance sessions in the test sets are different from those
used for the training sets.

3. RESULTS

3.1 Full Body Networks
Network performance is considered first in the case where

the input layer is given all the angle measurements available
for the performer’s body from the motion capture sessions.
This input set is made up of angles on the left and right sides
of the body for the hips, knees, ankles, shoulders, elbows,
wrists, neck, head, thorax, pelvis, feet, and spine. The net-
works have just one real valued output where, in training, a
desired value of -1 indicates clarinet and a desired value of
+1 indicates viola. The training data consisted of 50 frames
from each session with 8 different performers (4 violists and
4 clarinettists).

The classification performance in these cases confirms that
ANNs can distinguish viola and clarinet given just informa-
tion about body movement. This result is unsurprising, as
the data is very different between instruments, but it is a
necessary step to ensure that the networks function as ex-
pected. The next question is which subsets of this informa-

network hidden # average
type units correct range
MP 4 32 0.003
MP 5 32 0.147
MP 10 32 0.132
LRN 2 32 0.0000643
LRN 3 32 0.0000772
LRN 4 32 0.011
LRN 5 32 0.007

Table 1: Networks were trained on the full set of
body angles and tested on previously unseen motion
capture data. This table shows the network type,
the number of hidden units, the number of correct
classifications out of a possible 32, and the average
required error tolerance range of the network out-
put for correct classifications. MP indicates that
the network is a Multilayer Perceptron, and LRN
indicates a Layer Recurrent Network. The average
range is the average of the necessary error tolerance
ranges given over all the motion capture sessions in
the test set for the given network.

tion are enough to still perform the classification well. How
much information is there in the way a performer’s centre
of mass moves, or in the positioning of a performer’s legs?
Is sequential information necessary, or is there a sufficient
amount of information in data from a set of frames regard-
less of whether the network is able to encode a sense of their
ordering?

3.1.1 Performance

All of the full body networks correctly classified all 32 of
the test files. That is, it was always possible to find an er-
ror tolerance range that contained the majority of the frame
by frame classifications, but was small enough not to cause
an overlap with the same size of tolerance around the other
possible category. All of these test files were of motion cap-
ture sessions not used in building the training data. There
were 2 files for each of 16 performers, with 8 performers who
were previously seen by the network during training, and 8
performers who were completely new to the network.

It can be difficult to determine the appropriate number of
hidden units to use, as the algorithmic details of the ideal
mapping between the input and output of the network are
most often not known if one has opted to use ANNs. It
works well to train more than one network and compare,
while also trying to keep the number of hidden units small.
All of the networks in table 1 get 32 out of 32 classifications
correct, and have between 2 and 10 hidden units. It can be
seen that the recurrent networks have smaller error tolerance
ranges in general, and that both network types have smaller
tolerance ranges as the number of hidden units decreases.
This might seem counter-intuitive initially, but using more
hidden units can reduce generalisability in many cases [5].

Another detail that can be varied is the number of epochs
for which a network is trained. Connected with this is the
question of which stopping criteria are adequate. In the
case of these full-body networks, training for more than 100
epochs does not change the number of correct classifications,
and additional training beyond 100 epochs only slightly de-
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Figure 1: Output from a multilayer perceptron, with
10 hidden units, given leg angle data from a motion
capture session with a previously unseen violist. The
horizontal axis gives the frame number, and the ver-
tical axis gives the network output. There is a point
representing each output response for each frame
from a single motion capture session. This is an ex-
ample of a network not classifying a motion capture
session correctly.

creases the average required tolerance range. Training the
networks until the stricter stopping criteria are met can take
considerably more time, and does not appear to offer much
benefit in this situation. It is not uncommon for network
training to make a lot of progress early on then have a long
stretch of slow progress until the network converges.

It is worth considering that, while only 50% + 1 of the
frame by frame classifications within a full motion capture
session are required to be correct in order for the session to
be considered correctly classified, the ranges for error toler-
ance are fairly small. It is not the case that just over half
of the network outputs fall somewhere above 0 and the re-
mainder somewhere below it (or vice versa in the clarinet
case). Those frame by frame classifications that are cor-
rect fall within quite narrow bands around the ideal output.
While there are only two desired outputs (-1 or +1), the
actual output values can be any real number, and they do
not appear to have a distribution consistent with chance or
noise. See figures 1 and 2 for examples of network output.

3.2 Lower Body Networks
The second set of networks were trained only on the an-

gles of the leg joints. Again, both multilayer perceptrons and
layer recurrent networks were used, and the input for both
types of network was the angle data from the hips, knees
and ankles of both legs. Each angle has three values (one
for each axis) associated with it making a total of 18 inputs.
As in the previous section, for both network types there was
one real-valued output. Networks have been found to gener-
alise better with fewer hidden units so long as there are still
enough to allow the network to reach a viable stopping con-
dition during the training phase[5], so networks were trained
with small numbers of hidden units ranging from 3 to 15.
This was done with both the feedforward and recurrent net-
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Figure 2: Output from a multilayer perceptron, with
10 hidden units, given leg angle data from a motion
capture session with a previously unseen violist. The
horizontal axis gives the frame number, and the ver-
tical axis gives the network output. There is a point
representing each output response for each frame
from a single motion capture session. This is an
example of a network classifying a motion capture
session correctly.

works to allow for comparison between the architectures.
(i.e., The number and type of connections differ, but the
number of processing units in each of one type of network is
also seen in the other.) Training data came from the same
motion capture sessions as used in the previous section.

3.2.1 Performance

These networks do not classify all of the motion capture
sessions correctly, so here it is worthwhile to split the testing
set into two groups. None of the testing set is made from
motion capture sessions that were used to create the training
sets. However, half of the test sessions involve the same per-
formers as those seen in the training set, while the other half
of the sessions involve performers that were not seen in the
training phase. An example of the output from a network
for a single motion capture session that it has not classified
correctly is shown in figure 1, and an example with correct
classification (of a session with a different performer) by the
same network is shown in figure 2. In both cases the net-
work is responding to input from a session with a performer
who was not seen in the training set. The performance re-
sults are shown in table 2 and, as expected, recognition was
higher for familiar musicians.

Much like with the full body networks, training past a
certain number of epochs does not seem to offer significant
improvement in classification performance. For the layer re-
current network with 9 hidden units, for instance, the same
number of correct classifications continue to be made past
the first 20 epochs up until 70 epochs at which point the
performance begins to degrade. This general result was
consistent across the recurrent networks, with the expected
eventual decrease in performance for those that were trained
long enough. The multilayer perceptrons all reached stop-
ping conditions within 25 to 37 epochs.
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network h.u. known unknown
type correct avg. range correct avg. range
MLP 3 12 0.000169 2 0.0000482
MLP 4 14 0.130 12 0.135
MLP 5 11 0.0000276 10 0.095
MLP 9 14 0.022 12 0.066
MLP 15 12 0.000972 6 0.241
LRN 3 14 0.0000316 8 0.000158
LRN 4 14 0.0000523 9 0.001
LRN 5 12 0.000325 7 0.000249
LRN 9 12 0.011 9 0.042
LRN 15 10 0.0000258 9 0.000526

Table 2: Networks were trained on the set of lower
body angles and tested on previously unseen data
from known and unknown performers. This table
gives the network type, the number of hidden units
in the network (h.u.), the number of correct classifi-
cations out of a possible 16 (known) and 16 (un-
known) and the average required error tolerance
range for correct classifications. MP indicates that
the network is a Multilayer Perceptron, and LRN
indicates a Layer Recurrent Network. The average
range is the average of the necessary error tolerance
ranges given over all the motion capture sessions in
the test set for the given network. The larger the
average range, the greater the required error toler-
ance in order for the network to make classifications
correctly.

There doesn’t seem to be a consistent improvement in per-
formance when recurrent connections are used. The multi-
layer perceptrons perform quite well despite not having any
representation of sequence; this is possibly because there is
a lot of information in posture. Leg stance, independent of
movement, reveals enough that there is reasonable classifi-
cation performance with that input alone. Perhaps there is
another subset of data that might require sequential infor-
mation in making correct classifications. The next section
considers networks trained with just centre of mass data.

3.3 Centre of Mass Networks
The third set of networks were trained only on a 2-dimensional

projection of the centre of mass data, that eliminates the axis
corresponding to height. This was used to avoid the possi-
bility of the network simply memorising performer heights,
much like the previous section used angles instead of po-
sitional data to avoid the same problem. Considering the
centre of mass removes the possibility of the networks rec-
ognizing lower body stance. The networks had 2 input units
(one for each axis of the two-dimensional projection) and,
as with the previous sections, there was one output unit.

3.3.1 Performance

Once again recurrent connections do not seem to improve
classification performance. Networks were trained with 3
to 6 hidden units and the best performance was seen with
4 hidden units in both the multilayer perceptron and the
layer recurrent network. These results are shown in table 3.
Similar to previous sections, network training was stopped
where cross validation performance was highest.

network h.u. known unknown
type correct avg. range correct avg. range
MLP 3 15 0.00000195 9 0.0142
MLP 4 16 0.00000219 9 0.0202
MLP 6 16 0.00000412 6 0.00681
LRN 3 9 0.0423 5 0.000639
LRN 4 16 0.00224 9 0.00436
LRN 6 14 0.162 7 0.575

Table 3: Networks were trained on the floor of the
centre of mass and tested on previously unseen data
from known and unknown performers. This table
gives the network type, the number of hidden units
in the network (h.u.), the number of correct classifi-
cations out of a possible 16 (known) and 16 (un-
known) and the average required error tolerance
range for correct classifications. MP indicates that
the network is a Multilayer Perceptron, and LRN
indicates a Layer Recurrent Network. The average
range is the average of the necessary error tolerance
ranges given over all the motion capture sessions in
the test set for the given network.

Figure 3: Kinematic figures created from motion
capture data.

As anticipated, recognition of familiar musicians was higher
than that of previously unseen musicians, although table 3
shows that the networks do generalize somewhat. The layer
recurrent networks have similar tolerance ranges for both
sets of data, but the multilayer perceptrons have a marked
difference in that measurement, showing what could be in-
terpreted as a stronger degree of confidence when classifying
familiar musicians than when classifying novel musicians.

The results in this section suggest poor generalisation on
the part of the networks. More specifically, while they gen-
eralise reasonably well to new data from the same musicians,
they do not generalise well to new musicians, and this sug-
gests that it is not truly instrument recognition that they
have learned but something specific to the sets of musicians
in the training set. A step towards improving upon this
would be to train networks with data from a greater variety
of musicians and compare the results.

4. COMPARISON WITH HUMAN OBSERVERS
The network performance can be considered alongside hu-

man performance in related perception tasks. At the IDMIL
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FB LB CM
Human 100 48 - 60 48 - 68
MP 100 75 56
LRN 100 56 56

Table 4: Humans were shown kinematic body dis-
plays and networks were given corresponding mo-
tion capture data. This table lists the percentage
of displays (or files) where the subject (or network)
correctly classified the instrument. FB is the full
kinematic figure or the full set of body angles, LB is
the lower body figure or the lower body motion cap-
ture angles, and CM is the trunk kinematic figure
or the floor of the centre of mass.

there have been studies with human participants who were
asked to identify various details of a performance when pre-
sented with restricted sets of data [1]. The same motion cap-
ture data from violists and clarinettists playing J. Brahms’
Sonata Op. 120 No. 1 were used to construct kinematic stick
figures like the one shown in figure 3. This is the same data
used to create the testing sets of previously unseen perform-
ers in the work reported above, and so only that half of the
testing results are considered in this section. The studies
with human participants considered what sets of data were
sufficient for human perception of instrument identification.
Similarly, the work reported here used machine learning to
investigate which subsets of data contain sufficient informa-
tion for a classification to be made. Table 4 presents the
human subject data alongside the results from the best per-
forming trained networks in each category.

Humans and ANNs alike have no difficulty classifying in-
struments when shown the full set of body movements (i.e.
the full kinematic stick figure for the humans and the an-
gle data for the full body for the ANNs). When compared
with human performance on similar tasks, the feedforward
network trained on lower body data performs surprisingly
well. It seems likely that this network is recognising pat-
terns in posture since with a feedforward network there is
no sense of order or sequence or time with regards to the in-
put. (Whereas with a recurrent network, the order in which
the input patterns are presented does affect the output.)

The network performance in the centre of mass case is
comparable to that of the human participants in the trunk
condition of the perception study. It would be interesting
to investigate how human perception changes if the kine-
matic figures are based on familiar musicians. That is, if
the data comes from musicians the study participants have
seen perform.

5. CONCLUSIONS
Multilayer perceptrons and layer recurrent networks of

comparable sizes performed similarly in classifying subsets
of motion capture data. The recurrent networks did not
appear to have an advantage and, in the case of the lower
body networks, were even out-performed by the feedforward
networks. Networks were trained with a number of hidden
units ranging from 2 to 15 and, in both the lower body con-
dition and the centre of mass condition, were found to have
the highest performance on the test data with only 4 hidden
units. In all cases, it was possible to overtrain the networks

if very strict stopping conditions were set. Performance dur-
ing testing was found to be highest for networks that were
trained for less than 100 epochs and sometimes as few as 25.

Instrument recognition rates of the ANNs were found to
be commensurate with that of human observers in related
perception tasks for the various conditions. Both the net-
work classification tasks and the human perception tasks
were based on the same motion capture data. This similar
level of performance of ANNs to that of humans suggests
the potential for ANNs to be used in automated methods of
movement analysis of large databases.

As an extension of this work, these networks would be
good candidates for interpretation as they are fairly small.
This could offer additional insight if the difference in per-
formance on known and unknown musicians is uncovered.
Future work will also involve simulations with additional
neural network architecture variations to investigate if net-
work performance can be improved overall, and if there are
some conditions under which the recurrent connections in-
crease instrument recognition rates over architectures that
do not encode sequence.
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