
Sygaldry: DMI Components First and Foremost

Travis J. West
Input Devices and Music

Interaction Laboratory
(IDMIL), Centre for

Interdisciplinary Research in
Music Media and Technology
(CIRMMT), McGill University,
Montréal, Canada, and Univ.
Lille, Inria, CNRS, Centrale
Lille, UMR 9189 CRIStAL,

F-59000 Lille, France
travis.west@mail.mcgill.ca

Stephane Huot
Univ. Lille, Inria, CNRS,

Centrale Lille, UMR 9189
CRIStAL, F-59000 Lille,

France

Marcelo M. Wanderley
Input Devices and Music

Interaction Laboratory
(IDMIL), Centre for

Interdisciplinary Research in
Music Media and Technology
(CIRMMT), McGill University,

Montréal, Canada

ABSTRACT

Motivated by challenges involved in the long-term mainte-
nance of digital musical instruments, the frustrating prob-
lem of glue code, and the inherent complexity of evaluating
new instruments, we developed Sygaldry, a C++20 library
of digital musical instrument components. By emphasis-
ing the development of components first and foremost, and
through use of C++20 language features, strict manage-
ment of dependencies, and literate programming, Sygaldry
provides immediate benefits to rapid prototyping, mainte-
nance, and replication of DMIs, encourages code portabil-
ity and code-reuse, and reduces the burden of glue-code in
DMI firmware. Recognising that there still remains signif-
icant future work, we discuss the advantages of focusing
development and research on DMI components rather than
individual DMIs, and argue that a modern C++ library is
among the most appropriate realisations of these efforts.

Author Keywords

DMI development, maintainability, longevity, replication,
reuse, components, evaluation

CCS Concepts

•Applied computing → Sound and music computing; Per-
forming arts;

1. WHY WE NEED DMI COMPONENTS

1.1 Clear and Generalisable Evaluation
The NIME community has its roots in the field of human-
computer interaction (HCI), and the importance of eval-
uation is inherited from that heritage. Recent discussions
have, however, called into question the extent to which eval-

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’24, 4–6 September, Utrecht, The Netherlands.

uation can be a useful goal in NIME research, the forms
NIME evaluation may take, and the kinds of contributions
that evaluation can generate.

Wanderley and Orio [1] establish (if not explicitly, then
by implication) that the aims of evaluation are to enable
the incremental improvement of our designs, the develop-
ment of a body of empirically validated design insights that
can inform such improvements, and to realise the scientific
progression of this design research. If, for the sake of dis-
cussion, we assume these goals (which does not preclude
us from holding other simultaneous and even conflicting
aims, or from recognising the Western/colonial ideological
assumptions present in these goals) we are confronted with
immediate challenges. Wanderley and Orio ask: “How can
we rate the usability of an input device if the only available
tests were done by few—possibly one—expert and moti-
vated performers? [...] How do we evaluate an input device
without taking into account a specific aesthetic context?”.

Rodger et al [2] offer a logical and perhaps inevitable re-
sponse. They recognise that, given a specific musical instru-
ment’s interrelationship with deeply complex, even chaotic,
socio-musical ecologies, it is wildly unreasonable to expect
empirical observations of anything in particular about a spe-
cific musical instrument in a specific ecology to have any
hope of generalising scientifically to another instrument sit-
uated in its own specific ecology.

We can extend this further. We recognise that the basic
materials of computer music technology are deeply modu-
lar, interconnected, and network-like [3], [4]. Without even
considering the entangled socio-musical ecology in which it
is inextricably situated, we see that a musical instrument
unto itself is already a deeply complex interconnected as-
semblage of complex components. Should we expect any-
thing that we learn by evaluating the T-Stick [5], a rigid
cylindrical bar with an array of capacitive touch strips, one
magnetic-inertial sensor, and a position-insensitive pressure
sensor, to generalise to the Sponge [6], a deformable rect-
angular prism with discrete buttons, two inertial sensors,
and pressure sensors in two specific locations? And that’s
considering only the sensors. To what extent should an eval-
uation using the T-Stick played with one synthesiser (e.g.
[7]) be reasonably expected to provide general insight when
the same T-Stick is later played with a completely different
synthesiser (e.g. [8])?

Rodger et al emphasise considering the whole instrument-
musician-ecology system, with all of its specificities, when
considering evaluation. “Any complex system is not re-
ducible to its parts and the tightrope between precise analy-



sis and distorted representation is ever present.”They argue
that evaluations’ goals and methods should be as specific as
these systems. They further argue that reductive evalua-
tion methods, such as an evaluation of system latency, may
not always be relevant to the specificities of a system, and
that in some cases goals other than evaluation may be more
appropriate.
We rather emphasise the usefulness of the reductive ap-

proach. Although it does not erase the importance of con-
sidering specificities, there are definite benefits to decon-
structing the complexity of a DMI into simpler parts and
evaluating these components. This is what naturally goes
on when we study sound synthesis, sensors, or mapping
strategies, especially when we consider them without a par-
ticular application in mind. There are two important ad-
vantages to evaluation studies facing reusable components
of DMIs rather than assemblages of components in the con-
text of fully realised instruments: clarity and generalisabil-
ity.
First, there is relative freedom from the combinatorial

complexity that arises when numerous components are in-
terconnected. This means that evaluation of a component
is likely to have clearer targets than evaluation of an assem-
blage of components. For example, if we ask “what makes
one magnetic-inertial sensor fusion algorithm better than
another?” we can readily bring to mind clear and unob-
jectionable engineering factors that could be evaluated and
compared, such as accuracy, computational performance,
code size, and runtime latency. It is comparatively opaque
what should be evaluated when asking “what makes one
T-Stick better than another?”
Secondly, evaluations facing components are directly as

generalisable as the components are reusable. While the
implications of changes to a given set of engineering factors
must still be considered on a case-by-case basis within the
scope of the specificities of a particular design project, it
is reasonable to expect that information about these fac-
tors gained through evaluation may be useful to many such
projects. Evaluation studies facing components can thus
provide benefit to all designs that potentially make use of
those components. For example, because magnetic-inertial
motion sensors are used in many DMIs, studies facing these
sensors and their related algorithms and mappings can gen-
erate empirically validated insights into the properties of
these components, with the potential to incrementally im-
prove many DMIs using these sensors, or at least inform the
decision of the appropriate components for a given project
based on its unique aims. When a component implements
a functionality that is broadly reusable across numerous
DMI designs, evaluation studies of such a component are
broadly generalisable to the same extent that the compo-
nent is reusable.

1.2 Better Maintainability and Replicability
Furthermore, it’s very obvious that there are numerous com-
ponents of DMIs that can very directly be implemented as
reusable software components. The T-Stick consists of a
button, an analog force sensor, a capacitive touch sensor,
and a motion sensor. The mubone [9] consists of several
buttons and a motion sensor. There’s no particular reason
why these two instruments should not share the same soft-
ware components implementing the necessary procedure for
reading buttons and motion sensors, and performing motion
sensor fusion.
If there were a shared library of such components, or an

agreed-upon convention for compatibility between indepen-
dent libraries of components, this could drastically reduce

the burden of DMI firmware maintenance by favoring reuse;
e.g. rather than maintain two wholly seperate implementa-
tions for the mubone and T-Stick, with 0 code reuse, these
two projects could overlap by a significant amount. 100%
of the mubone’s sensors are used by the T-Stick, so the
former’s firmware could be essentially a subset of the lat-
ter. If many instruments were implemented by merely com-
bining components, then the maintenance burden of all of
these instruments could be consolidated in the shared li-
brary of components. Similarly, efforts required to replicate
one DMI on a new hardware platform could generalise to
all DMIs making use of the library, consolidating the effort
required to port and replicate instruments into the library.

This potential is in stark contrast with the observed re-
ality of ongoing DMI maintenance projects. In the main-
tenance lifecycle of the T-Stick, multiple complete rewrites
of the firmware have taken place, as seen in its firmware
archives1. Similarly, in the lifecycle of the mubone the
firmware of the instrument has been rewritten from scratch
twice. Despite their significant functional overlap as DMIs,
these projects have zero shared code in common beyond the
non-DMI-specific Arduino libraries on which they are based.
In our experience developing and maintaining DMIs, reuse
at the level of DMI-specific functionality is not prevalent,
and there is significant and wasteful repeated effort within
and across DMI development and maintenance efforts.

A component-oriented development style also has the pos-
sibility to be significantly declarative. Whereas Arduino
code is highly procedural (e.g. “To read a button: set up
the pins. Read the pins. Send data over OSC.”), firmware
based on high-level components could simply consist of a
declaration of those components used in the firmware (e.g.
“To make a T-Stick: use a button, a force sensor, a touch
sensor, and a motion sensor.”). A high-level declarative style
such as this would favor reuse and replicability, potentially
further reducing code size and thus improving maintainabil-
ity.

2. WHY DMI COMPONENTS SHOULD BE

IMPLEMENTED IN MODERN C++

2.1 DMI Development is Heterogeneous
If there are such clear benefits to maintenance, replication,
and research impact to be derived from having a shared li-
brary of reusable DMI components, why has the research
community not already galvanised around a common li-
brary? Among numerous other factors, it is challenging
to write code that is sufficiently portable as to be useful to
all concerned developers.

DMIs are most commonly implemented using a combina-
tion of heterogeneous computing platforms and coding lan-
guages, such as a microcontroller unit (MCU) that acquires
sensor data and communicates with a laptop computer that
runs mappings and media synthesis. C++, especially using
Arduino, is found ubiquitously in MCU firmware develop-
ment for DMIs. However, each different hardware platform
tends to introduce its own unique APIs. Without very care-
ful attention to portability, even when using a hardware-
abstraction layer such as Arduino, it is very difficult to write
truly portable code.

Software developed to run on the laptop is even more di-
verse in terms of development environments. Max/MSP,
Pure Data, Supercollider, ChuCK, Faust, Unity, various
digital audio workstations, Touch Designer, Python, the

1https://github.com/IDMIL/T-Stick-Archive

https://github.com/IDMIL/T-Stick-Archive


Web, and various other languages, environments, and plat-
forms are common. A library developed on any one of these
platforms is almost always mutually incompatible with any
other. For example, a Max/MSP library of DMI compo-
nents, such as the Digital Orchestra Toolbox, cannot be
used in Pure Data or any other environment.

2.2 Tyranny of Glue
Almost all of the environments just enumerated have a low-
level API in C or C++ that allows the basic system to be
extended through compiled plugins, and on embedded plat-
forms it is entirely possible that a substantial amount of
core DMI functionality could be implemented in a way that
is hardware independent. Herein lies a potential solution
to the problem of portability: a DMI component could be
implemented in C or C++ once, and then wrapped/glued
to the API for each language and hardware platform, thus
enabling the components to be reused across all these en-
vironments. Unfortunately, this only leads to a different
problem. If glue code must be written manually, as is gen-
erally the case, then the amount of glue code grows quadrat-
ically. For M components and N environments, there must
be written and maintained M ∗N wrappers [10].

Some languages, notably Faust, resolve this problem by
enabling the glue code to be generated automatically. In
Faust, an architecture file is used to automatically gener-
ate the glue code to wrap a given processor for a certain
environment. Thus only N architectures must be written
and maintained instead of M ∗N wrappers, which are gen-
erated automatically. However, Faust is explicitly geared
towards sample-oriented sound synthesis. It is not appro-
priate for the development of hardware-specific components
such as sensor acquisition, nor for sensor fusion and other
mappings, and generally any DMI components not related
to synthesising and processing audio.
As of C++20, it is possible to implement automatic glue

code generators in pure C++. Celerier [10] describes a re-
flectable component design pattern that enables this. Al-
though a full review of this design pattern is outside the
scope of this article, we note that Celerier’s approach pro-
vides best-possible type-safety, runtime performance, and
code size, and components can be implemented using only
plain portable C++ without including any library, and is
highly readable and easy to implement. It is arguably the
most portable possible component design pattern, as it en-
ables binding classes (analogous to Faust architectures) to
generate glue code automatically, such that a single com-
ponent implementation can be automatically wrapped for a
variety of runtime and hardware environments. Wherever
modern C++ is supported, this pattern enables a compo-
nent to be ported without having to maintain quadratic glue
code.
Because the underlying language is plain C++, all kinds

of components can be implemented, including low-level hard-
ware components, mappings, and sound synthesis and pro-
cessing. Although Celerier describes the pattern in the con-
text of sound processors being bound to different DAW plu-
gin APIs, it is highly relevant for DMI all other parts of a
DMI. For example, a component such as sensor fusion for
magnetic-inertial sensors could be implemented once and
automatically glued to various MCU hardware platforms,
Max/MSP, Pure Data, other interpreted languages, and
anywhere else such a component may be useful. We ar-
gue that these affordances, along with its portable ubiquity,
make modern C++ the most appropriate language upon
which to build shared DMI components.

3. SYGALDRY
Sygaldry is a new C++20 library meant as a proposal and
provocation for a way to organise DMI development to pro-
vide better research impact, maintainability, replicability,
code-reuse, and freedom from glue and boilerplate. It im-
plements a shared library of functionally complete DMI
firmware components, providing the benefits described above.
It suggests one form that such components could take. Sev-
eral important characteristics differentiate Sygaldry: a component-
oriented architecture [11], use of C++20 compile-time re-
flection and metaprogramming [10] to reduce glue code and
enable high-level declarative reuse of components, explicit
management and delineation of portable vs platform-specific
code to further favor reuse as hardware changes, and use of
literate programming practices to enhance documentation
[12].

Firmware for a DMI implemented in Sygaldry consists
of a declarative high-level specification of the components
used by the instrument, such as the following functionally
complete implementation of a T-Stick in less than 15 sub-
stantive lines of code:

// ... license premble and includes ...

using namespace sygaldry;

struct TStick

{

sygse::Button<GPIO_NUM_21> button;

sygse::OneshotAdc<syghe::ADC1_CHANNEL_5> adc;

sygsa::TrillCraft touch;

sygsa::ICM20948<sygsp::ICM20948_I2C_ADDRESS_0

> mimu;

sygsp::ComplementaryMimuFusion<decltype(mimu)

> mimu_fusion;

};

sygbe::ESP32Instrument<TStick> tstick{};

extern "C" void app_main(void) { tstick.app_main(); }

The components of the instrument are listed in a simple
structure definition, which is passed to a runtime class spe-
cific to a particular MCU. The runtime automatically iter-
ates over the components of the TStick structure at compile
time and generates boilerplate code to set up each compo-
nent and call their main subroutines in a loop. The runtime
also provides bindings that automatically generate glue code
so that the endpoints of the TStick components are exposed
over all of the control protocols available on that hardware
platform.

As well as completely eliminating glue code and dras-
tically reducing boilerplate for DMI firmware developers,
the library strongly favors code reuse. For example, the
firmware for the mubone orientor is substantively similar to
that of the T-Stick:

// ... license preamble and includes ...

using namespace sygaldry;

struct Mubone

{

sygse::Button<GPIO_NUM_21> button;

sygsa::ICM20948<sygsp::ICM20948_I2C_ADDRESS_0

> mimu;

sygsp::ComplementaryMimuFusion<decltype(mimu)

> mimu_fusion;

};



sygbe::ESP32Instrument<Mubone> mubone{};

extern "C" void app_main(void) { mubone.app_main(); }

Sygaldry components are implemented using the reflectable
component design pattern described by Celerier [10]. As
well as enabling components to be glued to a hardware-
specific runtime with hardware-specific transport protocols,
the reflectable design pattern is extended in a novel way
to enable the highly declarative implementation style, ef-
fectively eliminating boilerplate usually required to individ-
ually invoke each shared component in hand written setup
and main loop subroutines.
The current typeset literate documentation of the library

can be found at https://sygaldry.enchantedinstruments.
com, including the full literate source code of all components
in the library.

4. CONCLUSION
Sygaldry emphasises developing portable highly-reusable com-
ponents. This emphasis is motivated by the potential to
broaden and deepen the impact of DMI software develop-
ment in the research context–DMI components provide a
more generalisable foundation for DMI evaluation and study
than whole DMIs, and enable bettern maintainability and
replicability by favoring code reuse. A library of such com-
ponents is especially needed in the context of DMI firmware
development. Sygaldry suggests a particularly promising
form in which these components may be implemented, en-
abling them to be automatically deployed to various hard-
ware and software runtime environments without the DMI
developer having to write any glue code or boilerplate.
Sygaldry is in an early stage of development. The pool of

available components is small and limited to DMI firmware,
and it remains as future work to begin the intended eval-
uations and component-oriented study. Nevertheless, the
design and implementation of Sygaldry already provides im-
mediate benefits: the library enables the trivial implemen-
tation of new DMIs based on the available pool of compo-
nents, by high-level declaration; it is trivial to later replace a
single component of a DMI, enhancing maintainability and
simplifying incremental improvement; the emphasis on code
portability facilitates porting DMI implementations to new
platforms, futher enhancing maintainability; and the use of
C++20 language features drastically reduces the burden of
glue code, further enhancing portability, code-reusability,
and rapid prototyping; all of these features favoring code-
reuse within and across projects enabling the maintenance
and replication burden of many instruments to be consoli-
dated into a single library, with the potential to drastically
reduce overall development effort. The NIME community
is urged to consider the benefits of developing easily inter-
connected and mutually compatible DMI components first
and foremost, allowing instruments to emerge as trivial as-
semblages of these components. Sygaldry is offered as an
example of how this development might be approached, and
a possible starting point for future collaboration.

5. ENVIRONMENTAL STATEMENT
Maintainable DMI development is more sustainable. Sygaldry
encourages the reuse of electronic hardware in prototyping
efforts. However, we acknowledge that all DMI prototyping
efforts involve the consumption of electronic materials and
resources, and that this consumption has a permanent im-
pact on the environment and communities involved in the
production of these materials and resources.

References

[1] M. M. Wanderley and N. Orio, “Evaluation of input
devices for musical expression: Borrowing tools from
hci,”Computer Music Journal, vol. 26, 2002.

[2] M. Rodger, P. Stapleton, M. van Walstijn, M. Ortiz,
and L. Pardue, “What makes a good musical instru-
ment? A matter of processes, ecologies and specifici-
ties,” in Proceedings of the International Conference
on New Interfaces for Musical Expression (NIME),
2020.

[3] J. Chadabe, “The limitations of mapping as a struc-
tural descriptive in electronic instruments,” in Pro-
ceedings of the International Conference on New In-
terfaces for Musical Expression, 2002, pp. 1–5.

[4] V. Goudard, “Ephemeral instruments,” in Proceedings
of the International Conference on New Interfaces for
Musical Expression (NIME), 2019.

[5] J. Malloch, “A consort of gestural musical controllers:
Design, construction, and performance,” M.S. thesis,
McGill University, 2008.

[6] M. Marier, “The Sponge: A flexible interface,” in Pro-
ceedings of the International Conference on New In-
terfaces for Musical Expression (NIME), 2010.

[7] T. J. West, B. Caramiaux, and M. M. Wanderley,
“Making mappings: Examining the design process,” in
Proceedings of the International Conference on New
Interfaces for Musical Expression (NIME), 2020.

[8] T. J. West, B. Caramiaux, S. Huot, and M. M. Wan-
derley, “Making mappings: Design criteria for live per-
formance,” in Proceedings of the International Confer-
ence on New Interfaces for Musical Expression (NIME),
2021.

[9] T. J. West and K. Leung, “Early prototypes and artis-
tic practice with the mubone,” in Proceedings of the
International Conference on New Interfaces for Mu-
sical Expression (NIME), 2022.

[10] J.-M. Celerier, “Rage against the glue: Beyond run-
time media frameworks with modern C++,” in Pro-
ceedings of the International Computer Music Confer-
ence (ICMC), 2022.

[11] J. Lakos, Large-Scale C++: Process and Architecture.
Addison-Wesley Professional, 2019, vol. 1.

[12] D. E. Knuth, “Literate programming,”The Computer
Journal, vol. 27, 1984.

https://sygaldry.enchantedinstruments.com
https://sygaldry.enchantedinstruments.com

	Why We Need DMI Components
	Clear and Generalisable Evaluation
	Better Maintainability and Replicability

	Why DMI Components Should Be Implemented in Modern C++
	DMI Development is Heterogeneous
	Tyranny of Glue

	Sygaldry
	Conclusion
	Environmental Statement

